Tài liệu Xây dựng giải pháp điều khiển thích nghi mờ loại 2 cho đối tượng robot 5 bậc tự do: Kỹ thuật điều khiển & Điện tử
P. V. Dư, , Đ. V. Nam, “Xây dựng giải pháp cho đối tượng Robot 5 bậc tự do.” 32
XÂY DỰNG GIẢI PHÁP ĐIỀU KHIỂN THÍCH NGHI MỜ LOẠI 2
CHO ĐỐI TƯỢNG ROBOT 5 BẬC TỰ DO
Phan Văn Dư, Lê Văn Chương, Nguyễn Hoa Lư*,
Hồ Sỹ Phương, Tạ Hùng Cường, Đinh Văn Nam
Tóm tắt: Bài báo trình bày bộ điều khiển thích nghi mờ loại 2 áp dụng cho đối
tượng robot 5 bậc tự do. Bộ điều khiển được đề xuất dựa trên ý tưởng điều chỉnh
thích nghi các tham số của bộ điều khiển PID dựa trên hệ thống mờ loại 2 nhằm
mang lại chất lượng điều khiển tốt hơn cho những đối tượng phi tuyến mạnh, có sự
không chắc chắn động và bất định lớn. Sử dụng phần mềm Matlab Simulink mô
phỏng đánh giá kết quả, so sánh và kiểm chứng chất lượng của các bộ điều khiển.
Từ khóa: Điều khiển mờ loại 2; Thích nghi mờ; Robot 5 bậc tự do.
1. ĐẶT VẤN ĐỀ
Logic mờ đã được ứng dụng thành công trong nhiều lĩnh vực như trong các sản phẩm
gia dụng, trong phân loại dữ liệu hay trong điều khiển các ...
9 trang |
Chia sẻ: quangot475 | Lượt xem: 363 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Xây dựng giải pháp điều khiển thích nghi mờ loại 2 cho đối tượng robot 5 bậc tự do, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Kỹ thuật điều khiển & Điện tử
P. V. Dư, , Đ. V. Nam, “Xây dựng giải pháp cho đối tượng Robot 5 bậc tự do.” 32
XÂY DỰNG GIẢI PHÁP ĐIỀU KHIỂN THÍCH NGHI MỜ LOẠI 2
CHO ĐỐI TƯỢNG ROBOT 5 BẬC TỰ DO
Phan Văn Dư, Lê Văn Chương, Nguyễn Hoa Lư*,
Hồ Sỹ Phương, Tạ Hùng Cường, Đinh Văn Nam
Tóm tắt: Bài báo trình bày bộ điều khiển thích nghi mờ loại 2 áp dụng cho đối
tượng robot 5 bậc tự do. Bộ điều khiển được đề xuất dựa trên ý tưởng điều chỉnh
thích nghi các tham số của bộ điều khiển PID dựa trên hệ thống mờ loại 2 nhằm
mang lại chất lượng điều khiển tốt hơn cho những đối tượng phi tuyến mạnh, có sự
không chắc chắn động và bất định lớn. Sử dụng phần mềm Matlab Simulink mô
phỏng đánh giá kết quả, so sánh và kiểm chứng chất lượng của các bộ điều khiển.
Từ khóa: Điều khiển mờ loại 2; Thích nghi mờ; Robot 5 bậc tự do.
1. ĐẶT VẤN ĐỀ
Logic mờ đã được ứng dụng thành công trong nhiều lĩnh vực như trong các sản phẩm
gia dụng, trong phân loại dữ liệu hay trong điều khiển các quá trình công nghệ trong công
nghiệp. Tuy nhiên, hệ thống mờ thông thường (hệ thống mờ loại 1) bị hạn chế bởi khả
năng xử lý trực tiếp sự không chắc chắn động như nhiễu đầu vào hay các điều kiện thay
đổi của môi trường thường gặp trong thực tế, do đó chất lượng của hệ thống chưa đạt như
mong đợi. Lý thuyết về hệ thống mờ loại 2 được Zadeh [4] đưa ra từ năm 1975 và ngày
càng khẳng định được tính ưu việt của mình trong việc cải thiện và nâng cao chất lượng xử
lý thông tin so với nhiều phương pháp truyền thống khác. Với hàm liên thuộc là mờ, có
miền không chắc chắn được cung cấp thêm các mức độ nên hệ thống mờ loại 2 có thể tạo
mô hình và xử lý sự không chắc chắn động trong các hệ thống.
Tay máy robot là đối tượng có đặc tính phi tuyến mạnh, các tham số động học của đối
tượng thay đổi trong dải rộng, nhiễu tác động bên ngoài không biết trước và thay đổi theo
thời gian. Việc tìm kiếm các phương pháp tổng hợp các hệ thống điều khiển cho đối tượng
tay máy robot là vấn đề hấp dẫn và có ý nghĩa thiết thực, thu hút sự quan tâm của các nhà
khoa học trong lĩnh vực điều khiển. Cho đến nay đã có nhiều nghiên cứu thiết kế bộ điều
khiển trên cơ sở logic mờ nhằm cải thiện chất lượng điều khiển cho tay máy robot được
công bố. Trong bài báo này, nhóm tác giả đề xuất bộ điều khiển thích nghi mờ loại 2 với
cơ chế suy luận tính toán hiệu quả để xấp xỉ và bù trừ các thành phần bất định, nhiễu loạn
cho đối tượng robot 5 bậc tự do nhờ đó chất lượng điều khiển được nâng cao.
2. GIẢI QUYẾT VẤN ĐỀ
2.1. Mô hình đối tượng
Xét một cánh tay robot n bậc tự do (hình 1), có mô hình động lực học được mô tả
bằng phương trình sau [1,6]:
( )q V , ,m dM q q q q F q G q (1)
trong đó: ( )M q là ma trận quán tính, đối xứng, xác định dương và bị chặn
BM q M ; V ,m q q là véc tơ thành phần hướng tâm và coriolis; , , dF q G q
lần lượt là ma sát, trọng trường và thành phần nhiễu tác động bị chặn d BD ; là biến
điều khiển, q là tham số biến khớp góc quay.
Bài toán điều khiển đặt ra là thiết kế bộ điều khiển đảm bảo rằng đại lượng đầu ra bám
theo giá trị mong muốn cho trước *q q dưới điều kiện tác động nhiễu bên ngoài là
bất định và không chắc chắn.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số 60, 4 - 2019 33
Hình 1. Sơ đồ tay máy n DOF.
2.2. Hệ thống logic mờ loại 2
Logic mờ loại 1 với khả năng sử dụng kinh nghiệm và phương pháp rút ra kết luận của
con người dưới dạng các luật mờ về ngôn ngữ và không cần mô hình chính xác của đối
tượng. Tuy vậy cũng tồn tại những mặt hạn chế, sự không chắc chắn động vốn có của
nhiều ứng dụng trong thực tế có thể ảnh hưởng đến chất lượng của hệ thống điều khiển.
Logic mờ loại 2 được giới thiệu bởi Zaded có khả năng xử lý sự không chắc chắn động.
Một tập mờ loại 2 thể hiện ở hình 2 được định nghĩa bởi hàm liên thuộc mờ A , ở đó giá
trị hàm thuộc A x nằm trong khoảng [0; 1] mà không phải là một giá trị rõ với x X
và 0, 1u U , hay,
, , , , , 0,1 ,x xAA x u x u x X u J J (2)
trong đó, X là miền chính, xJ là miền phụ.
Hình 2. Tập mờ loại 2.
Kỹ thuật điều khiển & Điện tử
P. V. Dư, , Đ. V. Nam, “Xây dựng giải pháp cho đối tượng Robot 5 bậc tự do.” 34
Khi đó hàm liên thuộc tập mờ loại 2 có dạng 3 chiều, bao gồm một miền không chắc
chắn (FOU - Footprint Of Uncertainty). Chính sự không chắc chắn này tạo ra các tập mờ
loại 2 tăng mức độ tự do giúp có thể lập mô hình và xử lý sự không chắc chắn một cách
trực tiếp.
Hệ thống mờ loại 2 được tiếp cận theo hai cách là hệ thống mờ nội loại 2 và hệ thống
mờ chung loại 2 với sự khác biệt cơ bản về giá trị độ cao của hàm thuộc [4,5]. Đối với hệ
thống mờ nội loại 2 thì độ cao , 1A x u đơn giản hơn so với hệ thống mờ chung loại 2
thì , 0,1A x u . Tuy vậy, cả hai loại đều có quá trình tính toán phức tạp để tìm đầu ra
do giai đoạn giảm bậc và giải mờ. Trong bài báo này chỉ quan tâm đến hệ thống loại mờ
nội loại 2.
2.3. Bộ điều khiển mờ loại 2
Một bộ điều khiển mờ loại 2 bao gồm 3 khối cơ bản: Khối mờ hóa, khối thiết bị hợp
thành và khối xử lý đầu ra (giảm bậc và giải mờ). Sơ đồ khối của bộ điều khiển mờ loại 2
như hình 3.
Luật điều
khiển
Suy diễn
mờ
Mờ hóa
Giảm bậc
Giải mờ
đầu vào x
Tập mờ đầu vào
loại 2
Tập mờ đầu ra
loại 2
Tập mờ
loại 1
Giá trị rõ
Xử lý đầu raThiết bị hợp thành
Giá trị rõ
đầu ra y
Hình 3. Cấu trúc bộ điều khiển mờ loại 2.
Đối với bộ điều khiển mờ loại 2 đầu vào là một giá trị rõ được mờ hóa thành tập mờ
loại 2, tiếp đó khối thiết bị hợp thành triển khai các luật trên cơ sở các luật điều khiển tạo
ra đầu ra cũng là các tập mờ loại 2. Các luật của bộ điều khiển mờ loại 2 sẽ có dạng giống
bộ điều khiển mờ loại 1 nhưng các mệnh đề và kết hợp luật sẽ được trình bày theo hệ mờ
loại 2 như hình 4. Khối xử lý đầu ra thực hiện giảm bậc đưa về loại 1 bằng phương pháp
trọng tâm và giải mờ bằng cách tính trung bình để đạt được giá trị rõ đầu ra.
Giống với hệ mờ loại 1, hệ mờ loại 2 có hai mô hình theo Mamdani hoặc Sugeno [7,8].
Ta xem xét luật theo Mamdani như sau:
kR : nếu 1x là 1
kA ; 2x là 2
kA ; và px là
k
pA
thì z là kG ; 1,k M . (3)
Kết hợp các luật theo quy tắc min được thực hiện như hình 4
Hình 4. Kết hợp luật dùng quy tắc min trong hệ mờ loại 2 kiểu Mamdani.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số 60, 4 - 2019 35
Tập mờ đầu ra iG
được xác định theo luật max - min:
, .k i
x
x X AG R
y x x y (4)
Sau khi qua khối thiết bị hợp thành giả sử ta được tập mờ đầu ra loại 2 'G và cần giảm
bậc đưa 'G về tập mờ loại 1, có nhiều thuật toán được nghiên cứu để thực hiện ở quá trình
này như Karnik - Mendel (KM), EKM [8]. Để tính toán giảm bậc thì đầu tiên cần xác định
trọng tâm của tập mờ loại 2:
1 1
1 1
; .
N N
i i i i
l lk l rk
n n
lk rkN N
i i
l r
n n
f y f y
y y
f f
(5)
trong đó: ;lk rky y là trọng tâm đầu ra thứ n của cận phải và trái ,
i i
lk rky y ; 1,n N là số
lần lặp đảm bảo thuật toán hội tụ; ,i il rf f thể hiện độ phụ thuộc về bên phải và trái và
1 1
1 1, min , mini i i i
p p
i i i
p pA A A A
f f f x x x x
.
Từ ;lk rky y ta đi giải mờ để xác định đầu ra bộ điều khiển mờ loại 2:
.
2
lk rk
k
y y
Y x
(6)
2.3.1. Cấu trúc hệ thống điều khiển bám vị trí
Sai lệch *e và phương trình động lực học của robot n bậc tự do được đưa ra ở
(1). Hệ thích nghi mờ loại 2 gồm thành phần điều khiển kinh điển và thành phần điều khiển
mờ loại 2 như hình 5, được thiết lập dựa trên tín hiệu sai lệch e và đạo hàm của nó e .
BĐK mờ
loại 2
Cơ cấu
chấp hành
+
robot 5
DOF
*
d/dt
PK
IK
DK
1
1 s
s
Pe Ie De
_
e(t) u(t)
+
+
+
Động
học
ngược
S
uP(t)
uI(t)
uD(t)
Hình 5. Cấu trúc bộ điều khiển thích nghi mờ loại 2.
Bộ điều khiển thích nghi mờ loại 2 được đề xuất với cấu trúc như hình 5, luật điều
khiển PID thông qua tính toán sai lệch e và thành phần vi phân e được thực hiện bởi hệ
thống suy diễn mờ loại 2; các tham số bộ điều khiển PID được điều chỉnh theo bảng ma
trận các luật.
* ,e (7)
; ; .P P I I D De k e t e k e t e k e t (8)
Kỹ thuật điều khiển & Điện tử
P. V. Dư, , Đ. V. Nam, “Xây dựng giải pháp cho đối tượng Robot 5 bậc tự do.” 36
Các hệ số ; ;P I Dk k k được cập nhật
0 0 0
0 0 0
0 0 0
,
,
,
P P P P P P P
I I I I I I I
D D D D D D D
k k e t e k e t k e t k k e t
k k e t e k e t k e t k k e t
k k e t e k e t k e t k k e t
(9)
trong đó, 0 0 0; ;P I Dk k k là các tham số khởi tạo ban đầu của bộ điều khiển PID và
; ;P I Dk k k là các thành phần điều chỉnh theo sự thay đổi trên thực tế của đối tượng
được tính toán bởi bộ điều khiên mờ loại 2.
Khi đó, luât cho bộ điều khiển PID được biểu diễn như sau:
0
t
P I Du t k e k e d K e
0 0 0
0
t
P P I I D Dk k e t k k e d k k e . (10)
2.3.2. Thiết kế bộ điều khiển AIT2F cho robot
Trên cơ sở cấu trúc bộ điều khiển như hình 5, ta thiết kế bộ điều khiển mờ loại 2, với
đầu vào là sai lệch e và thành phần vi phân e ; đầu ra là các thành phần ; ;P I Dk k k .
Mỗi đầu vào/ra có 5 tập mờ loại 2 [NB,NS,ZE, PS,PB]; hàm liên thuộc dạng gaumf;
với dải giá trị của tập mờ đầu vào là 1 1e và 0e và dải giá trị tập mờ đầu ra
1.8 1.8 ; 0.6 0.6 ; 5 5P I De e e .
Hình 6. Hàm liên thuộc đầu vào e và e .
Các luật điều khiển trình bày theo nguyên tắc:
- Nếu sai lệch e là lớn thì Pe phải lớn và De nhỏ để hệ thống đáp ứng nhanh, và
Ie cần bị giới hạn;
- Nếu sai lệch e là trung bình thì Pe phải nhỏ và De lớn hơn để giảm độ quá
điều chỉnh;
- Nếu sai lệch e là nhỏ thì Pe và Ie phải lớn để hệ thống nhanh chóng về trạng
thái ổn định.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số 60, 4 - 2019 37
Bộ điều khiển mờ loại 2 có cấu trúc MISO tương ứng cho 3 đầu ra ; ;P I De e e với
các luật mờ có dạng: nếu e là () và e là () thì Pe là () và Ie là () và De là
(). Với mỗi đầu vào có 5 tập mờ ta có bảng ma trận các luật điều khiển (5×5) thể hiện
như các bảng 1, 2, 3.
Bảng 1. Luật điều khiển Pe .
e
e
NB NS ZE PS PB
NB PB PB PB PS ZE
NS PB PS PS ZE NS
ZE PS PS ZE NS NS
PS PS ZE NS NS NB
PB ZE NS NS NB NB
Bảng 2. Luật điều khiển Ie .
e
e
NB NS ZE PS PB
NB NB NB NB NS ZE
NS NB NS NS ZE PS
ZE NS NS ZE PS PS
PS NB ZE PS PS PB
PB ZE PS PS PB PB
Bảng 3. Luật điều khiển De .
e
e
NB NS ZE PS PB
NB PS NB NB NB PS
NS ZE NB NS NS ZE
ZE ZE NS NS NS ZE
PS ZE ZE ZE ZE ZE
PB PB PB PS PB PB
3. MÔ PHỎNG ĐÁNH GIÁ KẾT QUẢ
3.1. Tham số mô phỏng
Bảng 4. Bảng thông số robot 5 bậc tự do.
Khâu Khớp nối i i id ia
1 0-1 1 90
0
1d 0
2 1-2 2 0 0 2a
3 2-3 3 0 0 3a
4 3-4 4 90
0 0 4a
5 4-5 5 0 5d 0
Kỹ thuật điều khiển & Điện tử
P. V. Dư, , Đ. V. Nam, “Xây dựng giải pháp cho đối tượng Robot 5 bậc tự do.” 38
Để đưa ra kết quả đánh giá chất lượng bộ điều khiển mờ loại 2 ở đây, nhóm tác giả sử
dụng đối tượng robot 5 bậc tự do có các thông số như bảng 4 và thông số động cơ làm cơ
cấu chấp hành như bảng 5.
Trong đó:
ia : khoảng cách theo phương ix từ iO đến giao điểm của các trục ix và 1iz .
id : khoảng cách theo phương 1iz từ 1iO đến giao điểm của các trục ix và 1iz , id
thay đổi khi khớp i là khớp trượt.
i : là góc quay quanh trục ix từ 1iz đến iz .
i : là góc quay quanh trục 1iz từ 1ix đến ix .
Bảng 5. Tham số và giá trị của hệ chấp hành [4].
Tham số Giá trị
Điện trở phần ứng 2,1R
Điện cảm phần ứng 0, 24L H
Momen quán tính 20,052J kgm
Hệ số momen 1,53 /tk Nm A
Hằng số điện động 9.4 /ek Vs rad
3.2. Kết quả mô phỏng và thảo luận
Hình 7. So sánh đáp ứng góc 1
của bộ PID, AIT1F và AIT2F.
Hình 8. So sánh đáp ứng góc 3
của bộ PID, AIT1F và AITF.
Chất lượng của bộ điều khiển thích nghi mờ loại 2 (AIT2F) được so sánh với bộ điều
khiển thích nghi mờ loại 1 (AIT1F) và bộ điều khiển kinh điển PID. Hình 7,8 so sánh đáp
ứng đầu ra của góc 1 và 3 khi sử dụng bộ điều khiển PID, AIT1F và AIT2F; Hình 9 thể
hiện đáp ứng của góc 1 đến 5 khi sử dụng bộ điều khiển thích nghi mờ loại 2. Với kết quả
mô phỏng ta thấy đáp ứng đầu ra bám giá trí đặt cho trước, bộ điều khiển thích nghi mờ
loại 2 có khả năng loại bỏ nhiễu loạn không lường trước hiệu quả hơn và chất lượng đầu ra
hơn nhiều so với bộ điều khiển loại 1 và PID.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số 60, 4 - 2019 39
Hình 9. Đáp ứng đầu ra các góc 1 đến 5 của bộ điều khiển AIT2F.
4. KẾT LUẬN
Bài báo đã trình bày phương pháp thiết kế bộ điều khiển thích nghi mờ loại 2 được thử
nghiệm cho đối tượng phi tuyến mạnh là tay máy robot 5 bậc tự do; thực hiện so sánh với
các phương pháp thiết kế điều khiển mờ loại 1, PID. Kết quả mô phỏng trên phần mềm
Matlab Simulink chứng minh tính bám ổn định các góc khớp theo quỹ đạo cho trước, bộ
điều khiển AIT2F có khả năng xử lý sự không chắc chắn động cũng như nâng cao chất
lượng của hệ thống so với các bộ điều khiển PID và AIT1F.
TÀI LIỆU THAM KHẢO
[1]. Nguyễn Mạnh Tiến, “Điều khiển robot công nghiệp”, NXB khoa học và kỹ thuật, Hà
Nội, 2006.
[2]. Mendel, J.M, Hani Hagras, Woei-wan Tan, Melek, W.W, Hao Ying “Introduction to
type-2 fuzzy logic control : theory and applications”. John Wiley & Sons, Inc., 2014.
[3]. Mendel, J. M, “Type-2 fuzzy sets and systems: An overview”, IEEE Comput. Intel.
Magazine, Vol. 2, pp.20-29, May 2007.
[4]. Frank L.Lewis, Darren M.Dawson, Chaouki T.Abdallah, “Robot Manipulator Control
Theory and Practice”, Marcel Dekker, Inc., New York, 2009.
[5]. O. Castillo, P. Melin, “ A review on interval type-2 fuzzy logic applications in
intelligent control ”, Information Sciences , Vol.279 , pp. 615–631 ; 2014.
[6]. Liang, Q.; Mendel, J.M, “Interval type-2 fuzzy logic systems: Theory and design”.
IEEE Trans. Fuzzy Syst. 2000, 8, 535–550.
[7]. Kosko, “Neural networks and fuzzy control”, Prentice Hall, 1991.
[8]. N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy Set”,
Information Sciences, 2001, vol.132, pp.:195-220.
Kỹ thuật điều khiển & Điện tử
P. V. Dư, , Đ. V. Nam, “Xây dựng giải pháp cho đối tượng Robot 5 bậc tự do.” 40
ABSTRACT
ADAPTIVE INTEVAL TYPE 2 FUZZY CONTROLLER
FOR OBJECT ROBOT 5 DOF
This paper presents adaptive interval type 2 fuzzy controller and experiments for
robot 5 degree of freedom. The controller is based on the ideas that adjusts adaptive
parameters of PID controller which base on interval type 2 fuzzy system and
improve better performance for nonlinear object with unstructured dynamical and
uncertainties. Using Matlab Simulink softwave simulates, verifys and compares the
results obtained by the methods.
Keywords: Interval type 2 fuzzy logic controller; Adaptive fuzzy logic control; 5 DoF Robot.
Nhận bài ngày 11 tháng 01 năm 2019
Hoàn thiện ngày 20 tháng 02 năm 2019
Chấp nhận đăng ngày 16 tháng 4 năm 2019
Địa chỉ: Trường Đại học Vinh.
* Email: hoalunguyen@yahoo.com.
Các file đính kèm theo tài liệu này:
- 4_lu_5079_2150347.pdf