Tài liệu Ứng dụng thuật toán lọc thích nghi bình phương cực tiều đệ quy trong khử tạp trắng: Kỹ thuật điện tử
T. V. Khỏe, P.T. Hanh, “Ứng dụng thuật toán lọc thích nghi khử tạp trắng.” 156
ỨNG DỤNG THUẬT TOÁN LỌC THÍCH NGHI BÌNH PHƯƠNG
CỰC TIỀU ĐỆ QUY TRONG KHỬ TẠP TRẮNG
Tạ Văn Khỏe*, Phan Trọng Hanh
Tóm tắt: Bài báo trình bày về lọc thích nghi sử dụng thuật toán toán bình
phương cực tiểu đệ quy (RLS) và ứng dụng của nó để khử tạp trắng. Đây là một
phương pháp mới để thu được tín hiệu sạch thay thế cho phương pháp ước lượng
tín hiệu. Bộ lọc thích nghi RLS tự động cập nhật hệ số lọc để thích ứng với các tính
chất thay đổi ngẫu nhiên và không biết trước của tín hiệu. Các kết quả mô phỏng
trên Matlab chứng tỏ bộ lọc được xây dựng có khả năng khử tạp trắng rất tốt.
Từ khóa: Lọc thích nghi, Bình phương cực tiểu đệ quy, Tạp trắng.
1. ĐẶT VẤN ĐỀ
Trong xử lý tín hiệu số, đối tượng cần xử lý là tín hiệu ngẫu nhiên, không biết
trước và lẫn tạp đặc biệt là tạp trắng. Do vậy nếu chỉ sử dụng các bộ lọc đáp ứng
xung hữu hạn (FIR) hoặc vô hạn (IIR) có các hệ s...
8 trang |
Chia sẻ: quangot475 | Lượt xem: 556 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Ứng dụng thuật toán lọc thích nghi bình phương cực tiều đệ quy trong khử tạp trắng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Kỹ thuật điện tử
T. V. Khỏe, P.T. Hanh, “Ứng dụng thuật toán lọc thích nghi khử tạp trắng.” 156
ỨNG DỤNG THUẬT TOÁN LỌC THÍCH NGHI BÌNH PHƯƠNG
CỰC TIỀU ĐỆ QUY TRONG KHỬ TẠP TRẮNG
Tạ Văn Khỏe*, Phan Trọng Hanh
Tóm tắt: Bài báo trình bày về lọc thích nghi sử dụng thuật toán toán bình
phương cực tiểu đệ quy (RLS) và ứng dụng của nó để khử tạp trắng. Đây là một
phương pháp mới để thu được tín hiệu sạch thay thế cho phương pháp ước lượng
tín hiệu. Bộ lọc thích nghi RLS tự động cập nhật hệ số lọc để thích ứng với các tính
chất thay đổi ngẫu nhiên và không biết trước của tín hiệu. Các kết quả mô phỏng
trên Matlab chứng tỏ bộ lọc được xây dựng có khả năng khử tạp trắng rất tốt.
Từ khóa: Lọc thích nghi, Bình phương cực tiểu đệ quy, Tạp trắng.
1. ĐẶT VẤN ĐỀ
Trong xử lý tín hiệu số, đối tượng cần xử lý là tín hiệu ngẫu nhiên, không biết
trước và lẫn tạp đặc biệt là tạp trắng. Do vậy nếu chỉ sử dụng các bộ lọc đáp ứng
xung hữu hạn (FIR) hoặc vô hạn (IIR) có các hệ số lọc cố định thì không thể đạt
được kết quả tối ưu. Khi đó giải pháp sử dụng các bộ lọc thích nghi để bám sự thay
đổi của tín hiệu và tạp âm là bắt buộc. Các bộ lọc thích nghi sử dụng các tham số
của bộ lọc ở thời điểm trước đó, tự động điều chỉnh các tham số của bộ lọc ở thời
điểm hiện tại, để thích ứng với các tính chất thay đổi ngẫu nhiên và không biết
trước của tín hiệu [4]. Như vậy bộ lọc thích nghi có ưu điểm hơn vì nó có khả năng
bám và tự động điều chỉnh tham số lọc.
Một số nghiên cứu điển hình gần đây và hạn chế: (1) nghiên cứu của Sayed. A.
Hadei and M. lotfizad [3] tập trung phân tích các thuật toán thường sử dụng trong
lọc thích nghi. Trong đó, tác giả sử dụng ưu điểm đơn giản trong tính toán và thiết
kế của thuật toán bình phương trung bình cực tiểu chuẩn hóa (NLMS) để loại bỏ
tạp âm. Tuy nhiên khi đó tốc độ hội tụ và cập nhật hệ số lọc chậm. (2) Nghiên cứu
J. Gnitecki, Z. Moussavi [6] sử dụng lọc thích nghi RLS để loại bỏ những tiếng
đập của tim khi phân tích âm thanh của phổi. Mạch lọc được thiết kế có bậc thấp,
cấu trúc đơn giản tuy nhiên chỉ sử dụng với đối tượng lọc đơn giản. (3) Nghiên cứu
của Tian Lan, and Jinlin Zhang [4] thực hiện lọc thích nghi trên bo mạch phần
cứng FPGA sử dụng thuật toán LMS do đó đơn giản được cấu trúc phần cứng tuy
nhiên tốc độ hội tụ chậm.
Trên cơ sở nghiên cứu, phân tích ưu khuyết điểm của các thuật toán, các tác giả
đã cải tiến phương pháp khử tạp trắng trong tín hiệu nhờ sử dụng lọc thích nghi
RLS. Các kết quả mô phỏng trên Matlab chứng minh hiệu quả của nó so với các bộ
lọc FIR và IIR.
2. THUẬT TOÁN LỌC THÍCH NGHI BÌNH PHƯƠNG CỰCTIỀU ĐỆ QUY
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san Viện Điện tử, 10 - 2015 157
2.1. Tổng quan về xử lý tín hiệu thích nghi
Để nâng cao chất lượng tín hiệu thu được, ở thiết bị thu cần phải tích hợp các
khối xử lý để giảm ảnh hưởng của nhiễu và tạp âm, đồng thời bù trừ những thay
đổi của kênh truyền. Các bộ lọc kinh điển được thiết kế sẽ hoạt động hiệu quả nếu
phổ của tín hiệu có ích và nhiễu ổn định và phân bố ở những vùng riêng biệt trên
miền tần số. Tuy nhiên phương pháp này yêu cầu phải biết trước các đặc trưng
thống kê cơ bản của nhiễu (giả định nhiễu và tạp âm là những quá trình ngẫu nhiên
dừng). Các bộ lọc này thực hiện xử lý để nhận được tín hiệu ra giống với tín hiệu
mong muốn nhất như hình 1.
Nhưng trong thực tế, nhiễu và tạp âm là những quá trình ngẫu nhiên không
dừng. Vì vậy để phù hợp hơn với điều kiện thực tế người ta đã đề xuất phương
pháp xử lý tín hiệu thích nghi. Mọi thuật toán xử lý tín hiệu thích nghi đều xuất
phát từ một tập điều kiện ban đầu của môi trường truyền dẫn. Trong môi trường
không dừng, không tồn tại một giải pháp tối ưu duy nhất cho quá trình xử lý tín
hiệu thích nghi. Để đảm bảo đạt được tín hiệu thu tốt nhất thì các bộ lọc thích nghi
phải thực hiện quá trình điều chỉnh trọng số bộ lọc dù không biết trước được các
tính chất thống kê của tín hiệu vào. Sơ đồ khối của hệ thống xử lý tín hiệu thích
nghi được thể hiện trên hình 2.
Hình 1. Sơ đồ khối bộ lọc tuyến tính. Hình 2. Sơ đồ khối bộ lọc thích nghi.
Hoạt động của thuật toán xử lý tín hiệu thích nghi gồm hai quá trình chính:
- Quá trình lọc: quá trình này thực hiện lấy tín hiệu ra từ tín hiệu đầu vào.
- Quá trình thích nghi: mục đích của quá trình này là điều chỉnh tham số của
hệ thống theo sự thay đổi của tín hiệu vào và của môi trường truyền dẫn. Quá trình
thích nghi điều chỉnh tham số của bộ lọc theo tín hiệu sai lệch giữa đầu ra bộ lọc
với tín hiệu mong muốn.
2.2. Thuật toán bình phương cực tiểu đệ quy
Sơ đồ khối thực hiện lọc thích nghi sử dụng thuật toán RLS như hình 3. Đầu ra
y(n) được so sánh với tín hiệu mong muốn d(n) để hình thành sai số e(n). Trong đó
y(n) được xác định bằng tích chập giữa tín hiệu vào x(n) và các hệ số lọc w(k), lỗi
lọc là hiệu của tín hiệu mong muốn và tín hiệu thu được sau khi thực hiện lọc như
Kỹ thuật điện tử
T. V. Khỏe, P.T. Hanh, “Ứng dụng thuật toán lọc thích nghi khử tạp trắng.” 158
công thức 1.
N 1
k
k 0
y(n) w x(n k); e n d n y n
(1)
1Z 1Z 1Z
0W 1
W kW N 1W
Hình 3. Sơ đồ lọc thích nghi sử dụng thuật toán RLS.
Thuật toán RLS định nghĩa hàm tổn thất J là tổng của các bình phương lỗi e(n):
N 1
2
n 0
J e(n)
(2)
Quá trình thích nghi theo thuật toán RLS sẽ khiến cho J giảm dần qua các bước
lặp và tiến tới Jmin. Để hiểu bản chất của thuật toán RLS, ta viết các phương trình ở
dạng ma trận:
T , Ty X w e = d - X w (3)
Hàm định giá J phụ thuộc vào vector trọng số của bộ lọc và cần đạt đến giá trị
cực tiểu: TJ( ) min .w = e e Thay thế biểu thức của e vào hàm J(w) ta có:
T T T T T TJ( ) ( ) min w d d w Xd d X w w XX w (4)
Để xác định cực tiểu của J(w), thực hiện lấy gradient của nó và cho bằng 0. Từ
đây ta nhận được vector trọng số của mạch lọc cần xây dựng như công thức (5).
-1Tw = (XX ) Xd (5)
Về nguyên tắc, chúng ta có thể xác định w theo công thức (5), tuy nhiên khi đó
khối lượng tính toán rất lớn, chủ yếu là do phép lấy nghịch đảo ma trận. Với mục
đích giảm khối lượng tính toán, ta xem xét phương pháp tính toán đệ quy cho (5).
Giả sử (5) được tính toán theo nhiều bước, khi đó véc tơ hệ số lọc w tại bước lặp
thứ k được viết như sau:
-1(k ) (k ) (k ) (k ) (k )Tw = (X X ) X d (6)
Khi chuyển qua bước k+1, X(k) được bổ sung thêm 1 cột X(k+1), còn d(k)
được bổ sung thêm phần tử d(k+1).
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san Viện Điện tử, 10 - 2015 159
Từ (6) đặt T 1(k) ( (k) (k))P X X , ta nhận thấy P(k) chính là nghịch đảo của
ma trận tương quan của tín hiệu. Biến đổi ma trận và tính toán ta được P(k+1) như
công thức (7).
T
T
(k) (k 1) (k 1) (k)
(k 1) (k)
(1 (k 1) (k) (k 1))
P x x P
P P
x P x
(7)
Véc tơ trọng số lọc ở bước thứ k+1 nhận được như sau:
T
T
(k 1) (k 1) (k 1) (k 1)
(k) (k 1) (k 1) (k)
(k) (k)d(k) (k 1)d(k 1)
1 (k 1) (k) (k 1)
w = P X d
P x x P
P X x
x P x
(8)
Tiếp tục biến đổi và thực hiện nhóm thừa số chung ta được:
T
T
(k) (k 1)
(k 1) (k) (d(k 1) (k 1) (k))
1 (k 1) (k) (k 1)
P x
w = w x w
x P x
(9)
Nhận thấy tích T (k 1) (k)x w chính là kết quả xử lý mới, tức là y(k+1). Như
vậy, biểu thức Td(k 1) (k 1) (k) x w chính là thành phần lỗi e(k+1) do đó:
T
(k) (k 1)
(k 1) (k) e(k 1) (k) (k 1)e(k 1)
1 (k 1) (k) (k 1)
P x
w = w w K
x P x
(10)
Trong đó:
T
(k) (k 1)
(k 1)
1 (k 1) (k) (k 1)
P x
K
x P x
gọi là hệ số khuếch đại
Như vậy, khi sử dụng thuật toán RLS, mỗi bước lặp bao gồm các thao tác:
1. Khi có sự xuất hiện của véc tơ mẫu mới x(k), thực hiện chọn lọc tín hiệu
này với các hệ số lọc cũ w(k-1) và hình thành lỗi e(k):
Ty(k) (k) (k 1), e k d k y k . x w
2. Tính toán vector cột các hệ số khuếch đại:
T
(k 1) (k )
(k )
1 (k ) (k 1) (k )
P x
K
x P x
3. Tính toán P(k):
T
T
(k 1) (k) (k) (k 1)
(k) (k 1)
(1 (k) (k 1) (k))
P x x P
P P
x P x
4. Thực hiện cập nhật vector trọng số lọc:
(k) (k 1) (k)e(k) w = w K
3. KẾT QUẢ MÔ PHỎNG QUÁ TRÌNH KHỬ TẠP TRẮNG
3.1. Mô phỏng quá trình khử tạp trắng trong tín hiệu sine trên Simulink
Bộ lọc thích nghi sử dụng thuật toán RLS được sử dụng để loại bỏ tạp trắng ra
khỏi tín hiệu hình sine được mô phỏng trên Simulink như sơ đồ hình 4. Tín hiệu
tham chiếu và tín hiệu mong muốn được đưa tới các cổng tương ứng để tự động
cập nhật hệ số lọc trong khối lọc RLS. Tạp trắng phân bố Gause và các mẫu của tín
hiệu hình sine được tạo ra từ bộ tạo tạp và bộ tạo tín hiệu dạng sine.
Kỹ thuật điện tử
T. V. Khỏe, P.T. Hanh, “Ứng dụng thuật toán lọc thích nghi khử tạp trắng.” 160
white Noise
Sine Wave
DSP
Results
Reset
1
RLS Filter
Input
Desired
Adapt
Reset
Output
Error
Wts
RLS
0
0
Noise Filter
FDATool
Info
Info Freq
Response
FFT
To
Frame
Filter
Taps
User
Enable
1
Input Signal
Input Signal
Signal + Noise
Error Signal
Hình 4. Sơ đồ quá trình khử tạp trắng trên Simulink sử dụng thuật toán RLS.
Hình 5. Hệ số lọc và đặc tính tần khi số của bộ lọc RLS.
a. Số mẫu cho thích nghi ít. b. Số mẫu cho thích nghi đủ lớn.
Hình 6. Tín hiệu sau bộ lọc khi số mẫu thích nghi khác nhau.
Kết quả khi chạy mô phỏng quá trình khử tạp trắng trong tín hiệu hình sine trên
môi trường Simulink khi số mẫu thích nghi ít và đủ lớn như thể hiện trên hình 6.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san Viện Điện tử, 10 - 2015 161
Chúng ta có thể dễ dàng nhận thấy rằng khi số mẫu chưa đủ để bộ lọc xử lý, cập
nhật hệ số lọc thì các hệ số lọc và đặc tính tần số chưa ổn định do đó tín hiệu đầu
ra chưa giống với tín hiệu gốc (vẫn còn tạp âm). Tuy nhiên khi xử lý với số mẫu đủ
lớn các hệ số lọc và đặc tính tần rất ổn định. Tín hiệu ra sau lọc giống với tín hiệu
gốc và tạp trắng đã bị loại bỏ.
3.2. Mô phỏng quá trình khử tạp trắng trong tín hiệu âm thanh
Hình 7. Sơ đồ quá trình khử tạp trắng sử dụng thuật toán RLS.
Sơ đồ khối quá trình lọc thích nghi sử dụng thuật toán RLS để loại bỏ tạp trắng
trong nguồn âm thanh như hình 7. Dạng tín hiệu âm thanh và phổ của nó trước và
sau khử tạp trắng với bộ lọc thích nghi RLS có bậc mạch lọc 32 khi thực hiện mô
phỏng trên Matlab cho kết quả như hình 8.
0 1 2 3 4 5 6 7
x 10
4
-1
0
1
Tin hieu goc
0 1 2 3 4 5 6 7
x 10
4
-1
0
1
Tin hieu+ tap trang
0 1 2 3 4 5 6 7
x 10
4
-1
0
1
Loi = Tin hieu sau loc
Loc thich nghi su dung thuat toan RLS
0 500 1000 1500 2000 2500
0
100
200
300
Pho am thanh goc
0 500 1000 1500 2000 2500
0
100
200
300
Pho am am thanh + tap trang
0 500 1000 1500 2000 2500
0
100
200
300
Pho loi loc = pho am thanh sau loc
Pho khi Loc thich nghi su dung thuat toan RLS
a. Dạng tín hiệu âm thanh. b. Phổ tín hiệu âm thanh.
Hình 8. Tín hiệu âm thanh khi qua bộ lọc thích nghi RLS.
Từ kết quả chúng ta nhận thấy đoạn âm thanh khi bị tác động bởi tạp trắng mà
thực hiện lọc thích nghi với thuật toán RLS tín hiệu sau lọc cho có chất lượng như
tín hiệu gốc. Bằng mắt thường và bằng tai người thì không thể phân biết được tín
hiệu trước và sau lọc.
3.3. Đánh giá thuật toán RLS
Để đánh giá và so sánh hiệu quả các thuật toán thích nghi trong khử nhiễu
chúng ta sử dụng các tham số tốc độ hội tụ và độ tăng tỷ lệ tín trên tạp (SNRI). Tốc
độ hội tụ là số mẫu cần dùng để tín hiệu sau lọc tiệm cần tới tới hiệu gốc. Độ tăng
Kỹ thuật điện tử
T. V. Khỏe, P.T. Hanh, “Ứng dụng thuật toán lọc thích nghi khử tạp trắng.” 162
tỷ lệ tín trên tạp là hiệu tỷ lệ tín trên tạp của tín hiệu sau lọc và tín hiệu trước lọc.
Nghiên cứu trong [3] chứng minh rằng tốc độ hội tụ của thuật toán RLS nhanh hơn
rất nhiều so với các thuật toán kinh điển LMS, NLMS. Không những thế tốc độ
của nó vẫn lớn hơn các thuật toán mới được giới thiệu (FAP và FEDS). Tính toán
SNRI của các thuật toán và so sánh như bảng 1 ta thấy chất lượng của thuật toán
RLS trong khử nhiễu tạp trắng là tối ưu nhất. Tuy nhiên thuật toán RLS gồm nhiều
phép toán phức tạp do đó yêu cầu tốc độ tính toán cao.
Bảng 1. Tính toán SNRI của các thuật toán.
Thuật toán LMS NLMS FA P FEDS RLS
SNRI (db) 13.5905 16.8679 24.9078 22.2623 29.7355
4. KẾT LUẬN
Bài báo nghiên cứu về thuật toán RLS, trên cơ sở đó xây dựng phương pháp
mới để khử tạp trắng là sử dụng bộ lọc thích nghi RLS. Ngoài ra, bộ lọc này có
nhiều ứng dụng trong xử lý tín hiệu truyền thông nhằm nâng cao chất lượng quá
trình truyền tin. Quá trình mô phỏng trên môi trường Matlab chứng minh tạp trắng
trong tín hiệu khi qua bộ lọc có khả năng bị khử hoàn toàn và tín hiệu sau lọc cho
chất lượng như tín hiệu sạch.
TÀI LIỆU THAM KHẢO
[1]. Hoàng Mạnh Hà “Các phương pháp thích nghi trong lọc nhiễu tín hiệu điện
tim” Luận án tiến sĩ chuyên ngành Đảm bảo toán học cho máy tính, năm 2011.
[2]. Komal R. Borisagar and Dr. G.R.Kulkarni “Simulation and Comparative
Analysis of LMS and RLS Algorithms Using Real Time Speech Input Signal”
Global Journal of Researches in Engineering, Vol.10 Issue 5 (Ver 1.0),
October 2010, pp 45-49.
[3]. Sayed. A. Hadei, Student Member IEEE and M. lotfizad, “A Family of
Adaptive Filter Algorithms in Noise Cancellation for Speech Enhancement”
International Journal of Computer and Electrical Engineering, Vol. 2, No. 2,
April 2010, pp 1793-8163.
[4]. Tian Lan, and Jinlin Zhang, “FPGA Implementation of an Adaptive Noise
Canceller”, IEEE, International Symposiums on Information Processing,
ISBN 978-0-7695-3151-9, 2008, pp 553-558.
[5]. Kumar Shashi Kant, Amit Prakash, “Noise Cancellation by Linear Adaptive
Filter based on efficient RLS Lattice Algorithm” International Journal of
Scientific & Engineering Research, Volume 4, ISSN 2229-5518, May-2013,
pp 821-825.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san Viện Điện tử, 10 - 2015 163
[6]. J. Gnitecki, Z. Moussavi, H. Pasterkamp “Recursive Least Squares Adaptive
Noise Cancellation Filtering for Heart Sound Reduction in Lung Sounds
Recordings” Engineering in Medicine and Biology Society, 2003. Proceedings
of the 25th Annual International Conference of the IEEE, Vol.3, pp 2416 –
2419.
ABSTRACT
APPLICATIONS OF RECURSIVE LEAST SQUARES ALGORITHM
FOR WHITE NOISE CANCELLATION
This paper presents the adaptive filter using the Recursive Least Squares
(RLS) algorithm and its application to design white noise cancellation. It is
an alternative method of estimating signals corrupted by additive noise to
obtain only the original signal. The RLS adaptive filter uses the reference
signal on the input port and the desired signal on the desired port to
automatically match the filter response in the Noise Filter Block. The RLS
adaptive filter with Matlab is simulated and the results prove its performance
is very good.
Keywords: Adaptive filters, Recursive least squares algorithm, White noise.
Nhận bài ngày 21 tháng 07 năm 2015
Hoàn thiện ngày 10 tháng 08 năm 2015
Chấp nhận đăng ngày 07 tháng 09 năm 2015
Địa chỉ: Khoa Vô tuyến điện tử, Học viện Kỹ thuật quân sự .
*Email : tavankhoe@gmail.com;
Các file đính kèm theo tài liệu này:
- 21_ta_van_khoe_8346_2149992.pdf