Tài liệu Một lược đồ thủy vân rỗng mới dựa trên các phép biến đổi DWT, DCT và SVD - Nguyễn Hiếu Cường: Công nghệ thông tin
N. H. Cường, C. T. Luyên, “Một lược đồ thủy phân rỗng mới DWT, DCT và SVD.” 124
MỘT LƯỢC ĐỒ THỦY VÂN RỖNG MỚI DỰA TRÊN
CÁC PHÉP BIẾN ĐỔI DWT, DCT VÀ SVD
Nguyễn Hiếu Cường, Cao Thị Luyên*
Tóm tắt: Hiện nay thủy vân (watermarking) vẫn là một trong những phương
pháp phổ biến nhất để bảo vệ bản quyền ảnh số. Các kỹ thuật thủy vân truyền thống
đều phải nhúng một dấu thủy vân (watermark) vào ảnh cần bảo vệ, do đó sẽ ít nhiều
ảnh hưởng đến chất lượng của ảnh. Thủy vân rỗng (zero-watermarking) là một cách
tiếp cận mới, ở đó không cần phải nhúng trực tiếp dấu thủy vân vào ảnh gốc. Bản
quyền của ảnh sẽ được xác định dựa trên đánh giá dấu thủy vân rỗng (zero
watermark) đặc trưng cho mỗi ảnh. Do không phải nhúng dấu thủy vân vào ảnh, nên
với cách tiếp cận này, chất lượng ảnh sẽ hoàn toàn không bị ảnh hưởng. Vấn đề
quan trọng nhất khi thiết kế một lược đồ thủy vân rỗng là tính bền vững. Nói cách
khác, ảnh thủy vân có thể được xác định đúng bản quyền ...
9 trang |
Chia sẻ: quangot475 | Lượt xem: 922 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Một lược đồ thủy vân rỗng mới dựa trên các phép biến đổi DWT, DCT và SVD - Nguyễn Hiếu Cường, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Công nghệ thông tin
N. H. Cường, C. T. Luyên, “Một lược đồ thủy phân rỗng mới DWT, DCT và SVD.” 124
MỘT LƯỢC ĐỒ THỦY VÂN RỖNG MỚI DỰA TRÊN
CÁC PHÉP BIẾN ĐỔI DWT, DCT VÀ SVD
Nguyễn Hiếu Cường, Cao Thị Luyên*
Tóm tắt: Hiện nay thủy vân (watermarking) vẫn là một trong những phương
pháp phổ biến nhất để bảo vệ bản quyền ảnh số. Các kỹ thuật thủy vân truyền thống
đều phải nhúng một dấu thủy vân (watermark) vào ảnh cần bảo vệ, do đó sẽ ít nhiều
ảnh hưởng đến chất lượng của ảnh. Thủy vân rỗng (zero-watermarking) là một cách
tiếp cận mới, ở đó không cần phải nhúng trực tiếp dấu thủy vân vào ảnh gốc. Bản
quyền của ảnh sẽ được xác định dựa trên đánh giá dấu thủy vân rỗng (zero
watermark) đặc trưng cho mỗi ảnh. Do không phải nhúng dấu thủy vân vào ảnh, nên
với cách tiếp cận này, chất lượng ảnh sẽ hoàn toàn không bị ảnh hưởng. Vấn đề
quan trọng nhất khi thiết kế một lược đồ thủy vân rỗng là tính bền vững. Nói cách
khác, ảnh thủy vân có thể được xác định đúng bản quyền ngay cả khi nó đã bị tấn
công bởi một số thao tác xử lý ảnh. Trong bài báo này, chúng tôi đề xuất một lược
đồ thủy vân rỗng mới sử dụng các phép biến đổi DWT (Discrete Wavelet
Transform), DCT (Discrete Cosine Transform) và SVD (Singular Value
Decomposition). Kết quả thử nghiệm cho thấy lược đồ đề xuất có độ phức tạp tính
toán thấp và bền vững trước một số phép tấn công phổ biến, như thêm nhiễu, làm
mờ, lọc trung bình, nén JPEG.
Từ khóa: Thủy vân rỗng; Bảo vệ bản quyền; DWT; DCT; SVD.
1. GIỚI THIỆU
Ngày nay ảnh số rất thông dụng và là dữ liệu quan trọng trong nhiều lĩnh vực. So
với ảnh truyền thống dùng phim, ảnh số có nhiều ưu điểm như dễ dàng thu nhận, lưu
trữ, chỉnh sửa và chia sẻ. Tuy nhiên, cũng do việc dễ dàng sao chép, chỉnh sửa, ảnh
số cũng tạo ra những vấn đề mới cần được quan tâm, trong đó có việc bảo vệ bản
quyền. Bảo vệ bản quyền các sản phẩm đa phương tiện ngày càng cấp thiết, nhất là
từ khi có sự phổ biến rộng rãi của mạng Internet. Trong lĩnh vực an toàn dữ liệu, mã
hóa là một biện pháp phổ biến. Tuy nhiên, với phương pháp mã hóa, một khi dữ liệu
đã được giải mã, nó sẽ trở thành công khai và do đó sẽ không thể kiểm soát được
việc sao chép, sửa đổi nữa [1]. Do đó, với dữ liệu đa phương tiện nói chung cũng
như ảnh số nói riêng, chúng ta cần có một công cụ khác để có thể xác định, bảo vệ
bản quyền ngay cả khi nội dung của dữ liệu là công khai.
Thủy vân số (digital watermarking) là một công cụ được sử dụng phổ biến
trong việc bảo vệ bản quyền ảnh số [2]. Trong các kỹ thuật thủy vân, người ta cần
nhúng trước một số thông tin, gọi là dấu thủy vân (watermark) vào trong ảnh cần
được bảo vệ. Việc nhúng thủy vân này cần đảm bảo không ảnh hưởng đến cảm
nhận của mắt người về bức ảnh, đồng thời dấu thủy vân có thể trích ra được từ ảnh
đã được nhúng để đánh giá bản quyền của bức ảnh đó.
Tuy nhiên, việc nhúng một số thông tin vào ảnh sẽ ít nhiều ảnh hưởng đến chất
lượng của ảnh. Điều này là khó chấp nhận với những dữ liệu ảnh có yêu cầu rất
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san CNTT, 11 - 2018 125
cao về bảo toàn chất lượng, ví dụ như trong các ứng dụng ảnh y tế. Phương pháp
thủy vân rỗng (zero-watermarking) được nghiên cứu gần đây nhằm giải quyết các
yêu cầu về bảo vệ bản quyền ảnh số mà không cần nhúng dấu thủy vân trực tiếp
vào trong ảnh, do đó, không làm ảnh hưởng đến chất lượng của ảnh [3], [4].
Trong các kỹ thuật thủy vân rỗng, ảnh cần bảo vệ bản quyền thường được phân
hoạch thành các khối, sau đó các giá trị đặc trưng được trích ra từ từng khối ảnh.
Dựa trên các giá trị đặc trưng này, một khóa K được tạo ra. Dấu thủy vân W (dữ
liệu bản quyền) sẽ kết hợp với khóa K để tạo ra một dấu thủy vân rỗng ZW. Dấu
thủy vân ZW có thể được lưu trữ tại một trung tâm xác thực có thẩm quyền để sử
dụng khi cần xác thực bản quyền của ảnh.
Trong khi thuật toán trích xuất các giá trị đặc trưng có thể công khai, do đó
khóa K dễ dàng tính được khi có ảnh thì dấu thủy vân W là một thông tin bí mật,
chỉ những người sở hữu hợp pháp bức ảnh biết. Khi cần xác định bản quyền của
bức ảnh, người ta sẽ trích xuất các đặc trưng từ ảnh để tính khóa *K (bằng thuật
toán dùng để tính khóa K ở trên), sau đó kết hợp *K với dấu thủy vân ZW (được
lấy từ trung tâm xác thực) để nhận được *W . Khi cần xác định bản quyền, giá trị
W của người sở hữu ảnh sẽ được mang ra so khớp với *W . Nếu W trùng với *W
hoặc sự khác biệt là rất nhỏ (dưới một ngưỡng nào đó) thì có thể coi ảnh đó là có
bản quyền hợp pháp.
Các lược đồ thủy vân rỗng đều bao gồm một số bước cơ bản tương tự nhau.
Trong những bước đó, sự khác nhau chủ yếu giữa các lược đồ là ở bước trích xuất
các giá trị đặc trưng từ ảnh. Yêu cầu cơ bản của bước này là các giá trị được trích
xuất cần phải bền vững trước một số phép tấn công có chủ ý nhằm làm sai lệch kết
quả khi đối sánh và kiểm tra bản quyền. Theo hướng tiếp cận thủy vân rỗng, để
trích chọn các giá trị đặc trưng, Ye [5] sử dụng phép phân tích ma trận SVD kết
hợp với DCT, Zhou và Jin [6] sử dụng DWT và SVD. Rani và các đồng sự [7] đề
xuất hai lược đồ kết hợp DWT và SVD, trong đó lược đồ thứ nhất chia ảnh thành
các khối không chờm nhau và lược đồ thứ hai chia ảnh thành các khối chờm nhau.
Thanh và Tanaka [8] sử dụng phân tích QR và biến đổi DCT một chiều (1-D DCT)
trong bước trích chọn đặc trưng. Yang và các đồng sự [9] đề xuất một lược đồ sử
dụng DWT, áp dụng để bảo vệ bản quyền dữ liệu âm thanh. Jalil và các đồng sự áp
dụng thủy vân rỗng trong xác thực văn bản [10].
Bài báo này nghiên cứu về phân tích SVD và áp dụng nó trong thiết kế các đặc
trưng bền vững cho lược đồ thủy vân rỗng. Chúng tôi cải tiến phương pháp trích
chọn đặc trưng bền vững của ảnh bằng cách áp dụng kết hợp các phép biến đổi
DWT, DCT và SVD. Kết quả thực nghiệm cho thấy, lược đồ đề xuất nói chung
bền vững hơn lược đồ thủy vân dựa trên SVD của Ye [5], cũng như lược đồ của
Zhao và Jin [6].
Công nghệ thông tin
N. H. Cường, C. T. Luyên, “Một lược đồ thủy phân rỗng mới DWT, DCT và SVD.” 126
2. MỘT SỐ KHÁI NIỆM CƠ SỞ
2.1. Phép phân tích SVD
Với phép phân tích SVD (Singular Value Decomposition), mọi ma trận thực A
cỡ M×N luôn có thể khai triển được thành tích của ba ma trận thực như sau [14]:
TVSUA
Trong đó : U và V là các ma trận trực giao cấp và cấp , S là ma trận đường
chéo có tính chất S(1,1) ≥ S(2,2) ≥ ... ≥ S(t, t) ≥ 0, với t = min {M, N}.
Nhiều nghiên cứu, như trong [14], [15] đã chỉ ra rằng các hàng đầu tiên của ma
trận U, các cột đầu tiên của ma trận V và các phần tử đầu tiên trên đường chéo
chính của ma trận S có độ bền vững cao trước một số phép tấn công phổ biến, như
thêm nhiễu, làm mờ, nén JPEG...
2.2. Xác định hệ số tương quan
Để xác định độ bền vững của các lược đồ thủy vân, chúng tôi so sánh giữa dấu
thủy vân *W trích từ ảnh bị tấn công với dấu thủy vân gốc W. Việc này được thực
hiện thông qua ước lượng giá trị sai số ),( *WWERR :
(2.1) ||
1
),(
1
**
t
i
ii ww
t
WWERR
Trong đó **1* ,..., twwW là dấu thủy vân được lấy ra từ ảnh đã bị tấn công *H ,
twwW ,...,1 là dấu thủy vân được trích ra từ ảnh gốc H.
Để xác định bản quyền, hệ số ),( *WWERR sẽ được so sánh với một ngưỡng T.
Nếu ),( *WWERR < T, tức là *W được coi là khá gần với W thì có thể kết luận ảnh
*H là ảnh thuộc bản quyền của tác giả có ảnh H.
2.3. Một số lược đồ sử dụng SVD
Trong phần này chúng tôi trình bày tóm tắt hai lược đồ thủy vân rỗng khá phổ
biến dựa trên phân tích SVD của Ye [5] và của Zhou và Jin [6].
2.3.1. Lược đồ của Ye
Đầu vào của thuật toán là một ảnh H có kích thước M×N. Để tạo các dấu hiệu
đặc trưng, các bước thực hiện như sau:
Bước 1: Phân hoạch ảnh H thành các khối ảnh không giao nhau (non-
overlapping) có kích thước mỗi khối là m×n.
Bước 2: Áp dụng SVD để biến đổi từng khối Hi thành tích của ba ma trận ,
và với là ma trận đường chéo.
Bước 3: Áp dụng DCT cho ma trận : =DCT( )
Phép biến đổi DCT biến đổi khối từ miền không gian ảnh sang miền tần số,
trong đó hệ số đầu tiên (hệ số DC) là tập trung nhiều nhất năng lượng của ảnh. Ký
hiệu hệ số DC của ma trận là .
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san CNTT, 11 - 2018 127
Bước 4: Khóa K là đặc trưng của ảnh và được tạo ra theo công thức sau:
Nếu ≥ thì = 0 ngược lại thì = 1
Trong đó ∈ 1, 2, ,
×
− 1 .
Khi cần xác nhận bản quyền của ảnh, người ta sẽ trích xuất các giá trị đặc trưng
từ ảnh để đối sánh với K theo trình tự như dưới đây.
Giả sử *H là ảnh cần được chứng minh là có bản quyền thì trước hết cần thực
hiện các bước để trích xuất các đặc trưng từ *H :
Bước 1: Phân hoạch ảnh *H thành các khối *iH không giao nhau và có kích
thước là m×n.
Bước 2: Áp dụng phân tích SVD cho từng khối *iH :
*iU ×
*
iS × (
*
iV )
T = SVD( *iH ).
Bước 3: Áp dụng DCT cho ma trận *iS :
Gọi hệ số DC của ma trận hệ số *iT là
*
iD .
Bước 4: Sử dụng công thức như đã tính K để tính giá trị của *K như sau:
Nếu
*
2 jD ≥
*
12 jD thì
*
jK = 0 ngược lại
*
jK = 1.
Trong đó ∈ 1, 2, ,
×
− 1 .
Để xác định bản quyền của ảnh *H , cần tính giá trị sai số giữa *K và K. Nhược
điểm của lược đồ này là trong thực tế ứng dụng vẫn có thể gây ra sự nhập nhằng
khi có tranh chấp. Do không có bên thứ ba đáng tin cậy để làm trung gian, đối
phương có thể nói rằng không có gì đảm bảo K là khóa hợp pháp tương ứng với
bức ảnh đó. Phần tiếp theo, chúng tôi trình bày một lược đồ thủy vân rỗng khác, đề
xuất bởi Zhou và Jin [6] trong đó giải quyết được vấn đề còn tồn tại trên.
2.3.2. Lược đồ của Zhou và Jin
Trong thuật toán tạo khóa, đầu vào là một ảnh H có kích thước M×N, gồm các
bước thực hiện như sau:
Bước 1: Áp dụng DWT trên ảnh H rồi lấy ra phần tần số thấp L: L = DWT(H).
Bước 2: Phân hoạch L thành các khối không chờm nhau có kích thước m×n.
Bước 3: Áp dụng SVD cho từng khối : × ×
= SVD( ).
Bước 4: Đặc trưng K được tính theo công thức sau:
=
1 ế ≥
0 ượ ạ
Bước 5: Tính thủy vân rỗng ZW theo công thức: ZW = XOR(W, K)
Trong đó W là dấu thủy vân bản quyền cho trước. Dấu thủy vân rỗng ZW sau
khi được tạo ra sẽ được lưu tại một trung tâm xác thực có thẩm quyền. Khi cần
chứng minh bản quyền với ảnh, giá trị ZW tương ứng sẽ được lấy ra để thực hiện
Công nghệ thông tin
N. H. Cường, C. T. Luyên, “Một lược đồ thủy phân rỗng mới DWT, DCT và SVD.” 128
việc xác định. Quá trình trích các đặc trưng từ một ảnh *H để khẳng định bản
quyền được thực hiện theo chiều ngược lại, gồm các bước:
Bước 1: Áp dụng DWT trên ảnh *H , sau đó lấy ra phần tần số thấp *L :
*L = DWT ( *H ).
Bước 2: Phân hoạch *L thành các khối *iL có kích thước m×n.
Bước 3: Áp dụng SVD cho từng khối *iL :
*
iU ×
*
iS × (
*
iV )
T = SVD( *iL ).
Xây dựng khóa *L dựa vào các đặc trưng của ảnh và công thức dùng để tính
*K .
Bước 4: Đặc trưng K* được tính theo công thức sau:
∗ =
1 ế
∗ ≥
∗
0 ượ ạ
Bước 5: Lấy dấu thủy vân ZW từ trung tâm xác thực, tính *W theo công thức:
*W = XOR(ZW, *K )
Bản quyền của ảnh sẽ được xác định thông qua đánh giá tương quan giữa *W
và W.
3. ĐỀ XUẤT LƯỢC ĐỒ THỦY VÂN RỖNG
Mục này trình bày đề xuất lược đồ thủy vân rỗng sử dụng các phép biến đổi
DWT và DCT kết hợp với phép phân tích ma trận SVD và kết quả thử nghiệm so
sánh lược đồ đề xuất với một số kỹ thuật thủy vân rỗng liên quan.
3.1. Lược đồ thủy vân rỗng
- Quá trình tạo thủy vân rỗng
Bước 1: Ảnh H được biến đổi DWT hai mức, sau đó lấy phần hệ số thấp L.
Phân hoạch L thành các khối không giao nhau .
Bước 2: Áp dụng SVD cho mỗi khối : Ui × Si × Vi
T = SVD( )
Bước 3: Áp dụng phép biến đổi DCT cho các khối : = DCT( )
Hệ số đầu tiên (1,1) là hệ số DC có giá trị lớn nhất, là nơi tập trung năng
lượng chủ yếu của . Ký hiệu (1,1) là .
Bước 4: Tính giá trị của khóa K theo công thức sau:
Nếu > thì = 0, ngược lại thì = 1 với ∈ 1, 2, ,
×
− 1 .
Bước 5: Từ giá trị đặc trưng K và dấu thủy vân bí mật, tạo dấu thủy vân rỗng
theo công thức: ZW = XOR(K, W).
Dấu thủy vân ZW không được nhúng vào ảnh mà sẽ được gửi vào một trung
tâm trung gian có thẩm quyền, thường được gọi là trung tâm xác thực.
- Quá trình kiểm tra bản quyền của ảnh *H được thực hiện theo các bước sau:
Bước 1: Trích các đặc trưng *K từ một ảnh *H được thực hiện tương tự như
quá trình tạo thủy vân rỗng từ bước 1 đến bước 4 ở trên.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san CNTT, 11 - 2018 129
Bước 2: Dấu thủy vân rỗng ZW được lấy từ trung tâm xác thực để tính *W .
Bước 3: Tính tương quan giữa *W và W được tính theo công thức (2.1).
Nếu sai số nhỏ hơn một ngưỡng T nào đó thì *H được coi là thuộc bản quyền
của tác giả có ảnh H.
Kết quả thử nghiệm so sánh độ bền vững của thuật toán đề xuất với các lược đồ
liên quan được trình bày trong phần tiếp theo.
3.2. Kết quả thử nghiệm
Một thuật toán thủy vân được coi là bền vững nếu sau khi ảnh bị tấn công vẫn
có thể trích ra được các đặc trưng cần thiết để xác định đúng bản quyền. Vì các
lược đồ thủy vân rỗng không nhúng dấu thủy vân trực tiếp vào ảnh nên chất lượng
ảnh không bị ảnh hưởng. Để có thể đánh giá độ bền vững của các lược đồ, chúng
tôi áp dụng riêng rẽ các tấn công với các mức độ khác nhau lên các ảnh chuẩn
được lấy trong cơ sở dữ liệu ảnh USC-SIPI để tạo ra các ảnh bị tấn công như Hình
1. Các phép tấn công như thêm nhiễu (15%), nén JPEG (50%), làm mờ (2%), lọc
trung bình với cửa sổ lọc 5×5 và phóng to ảnh với tỷ lệ 1.2 được thực hiện trên
photoshop 2010. Để có thể có sự so sánh khách quan, các lược đồ cần thử nghiệm
đều được áp dụng trên cùng các ảnh gốc và ảnh bị tấn công tương ứng và tính các
giá trị tương quan ERR (công thức 2.1). Giá trị ERR càng nhỏ thể hiện thuật toán
càng bền vững. Kết quả thử nghiệm được thể hiện trong các bảng (Bảng 1 – 5).
(A) (B) (C)
(D) (E) (F)
Hình 1. Các ảnh được dùng trong thử nghiệm.
Bảng 1. Độ bền vững đối với phép thêm nhiễu.
A B C D E F
Ye 0.29 0.30 0.19 0.19 0.29 0.21
Zhou và Jin 0.24 0.16 0.11 0.13 0.22 0.15
Đề xuất 0.02 0.00 0.00 0.04 0.00 0.05
Công nghệ thông tin
N. H. Cường, C. T. Luyên, “Một lược đồ thủy phân rỗng mới DWT, DCT và SVD.” 130
Bảng 2. Độ bền vững đối với phép nén.
A B C D E F
Ye 0.08 0.06 0.04 0.05 0.10 0.21
Zhou và Jin 0.06 0.03 0.01 0.03 0.07 0.15
Đề xuất 0.01 0.01 0.00 0.01 0.01 0.01
Bảng 3. Độ bền vững đối với phép làm mờ.
A B C D E F
Ye 0.11 0.11 0.16 0.09 0.27 0.13
Zhou và Jin 0.05 0.04 0.07 0.04 0.07 0.06
Đề xuất 0.02 0.00 0.01 0.02 0.01 0.03
Bảng 4. Độ bền vững đối với phép lọc trung bình.
A B C D E F
Ye 0.14 0.09 0.21 0.10 0.16 0.17
Zhou và Jin 0.09 0.03 0.13 0.07 0.12 0.12
Đề xuất 0.01 0.00 0.01 0.03 0.01 0.05
Bảng 5. Độ bền vững đối với phép dãn ảnh tỷ lệ 1.2.
A B C D E F
Ye 0.06 0.05 0.06 0.04 0.07 0.06
Zhou và Jin 0.03 0.02 0.03 0.02 0.03 0.02
Đề xuất 0.01 0.01 0.01 0.00 0.00 0.01
Chúng tôi thử nghiệm lần lượt với các lược đồ của Ye [5], Zhou và Jin [6] và
lược đồ đề xuất của chúng tôi. Kết quả thử nghiệm cho thấy lược đồ của Ye là kém
bền vững nhất. Bằng việc kết hợp với các phép biến đổi DWT và DCT, chúng tôi
đã thiết kế được một lược đồ có độ bền vững cao hơn hẳn. Kết quả thử nghiệm cho
thấy, lược đồ đề xuất đều bền vững hơn hẳn những lược đồ đối sánh.
4. KẾT LUẬN
Thủy vân rỗng (zero-watermarking) là một phương pháp được sử dụng gần đây
để xác thực và bảo vệ bản quyền ảnh số. Ưu điểm của phương pháp này so với các
kỹ thuật thủy vân truyền thống là chất lượng ảnh được bảo toàn do không phải
nhúng dấu thủy vân vào trong ảnh. Bài báo đã nghiên cứu một số phương pháp
thủy vân rỗng được quan tâm nhiều hiện nay và đề xuất lược đồ thủy vân cải tiến.
Lược đồ áp dụng biến đổi DWT hai mức kết hợp với phân tích SVD và biến đổi
DCT ma trận đường chéo, đã có thể cải tiến đáng kể độ bền vững. Kết quả thử
nghiệm cho thấy lược đồ đề xuất bền vững trước các phép tấn công phổ biến. So
sánh với các lược đồ của Ye [5] và của Zhou và Jin [6], lược đồ đề xuất nói chung
bền vững hơn.
Nghiên cứu khoa học công nghệ
Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san CNTT, 11 - 2018 131
Tính bền vững của các lược đồ thủy vân là quan trọng nhất. Tuy nhiên, khi cần
làm việc với rất nhiều ảnh hoặc những ảnh có kích thước lớn thì cải thiện tốc độ
thực hiện của các thuật toán cũng rất cần thiết. Những cải tiến trong [16] có thể
ứng dụng để nâng cao tốc độ thực hiện của các lược đồ thủy vân.
TÀI LIỆU THAM KHẢO
[1]. A. Piva, “An Overview on Image Forensics,” ISRN Signal Process., vol.
2013, pp. 1–22, 2013.
[2]. I. J. Cox, M. Miller, J. Bloom, and J. Fridrich, "Digital Watermarking and
Steganography". Morgan Kaufmann, 2009.
[3]. X. X. Leng, J. Xiao, D. Y. Li, and Z. Y. Shen, “Study on the Digital Image
Zero-Watermarking Technology,” Adv. Mater. Res., vol. 765–767, pp. 1113–
1117, 2013.
[4]. A. Rani and B. Raman, “An image copyright protection scheme by encrypting
secret data with the host image,” Multimed. Tools Appl., vol. 75, no. 2, pp.
1027–1042, 2016.
[5]. T. Ye, “A Robust Zero-Watermark Algorithm Based on Singular Value
Decomposition and Discreet Cosine Transform,” CCIS, pp. 1–8, 2011.
[6]. Y. Zhou and W. Jin, “A novel image zero-watermarking scheme based on
DWT-SVD,” ICMT 2011, pp. 2873–2876, 2011.
[7]. A. Rani, A. K. Bhnullar, D. Dangwal, and S. Kumar, “A Zero-Watermarking
Scheme using Discrete Wavelet Transform,” Procedia Comput. Sci., vol. 70,
pp. 603–609, 2015.
[8]. T. M. Thanh and K. Tanaka, “An image zero-watermarking algorithm based
on the encryption of visual map feature with watermark information,”
Multimed. Tools Appl., pp. 2–12, 2016.
[9]. Y. Yang and M. Lei, “A Novel Robust Zero-Watermarking Scheme Based on
Discrete Wavelet Transform,” J. Multimed., vol. 7, no. 4, pp. 303–308, 2012.
[10]. Z. Jalil, A. M. Mirza, and M. Sabir, “Content based Zero-Watermarking
Algorithm for Authentication of Text Documents,” Int. J. Comput. Sci. Inf.
Secur., vol. 7, no. 2, pp. 212–217, 2010.
[11]. X. K. Kang and S. W. Wei, “Identifying Tampered Regions Using Singular
Value Decomposition in Digital Image Forensics,” 2008 Int. Conf. Comput.
Sci. Softw. Eng., vol. 3, pp. 926–930, 2008.
[12]. W. Lu, F. Chung, and H. Lu, “Blind Fake Image Detection Scheme Using
SVD,” Image (Rochester, N.Y.), no. 5, pp. 1726–1728, 2006.
[13]. U. M. Gokhale and Y. V Joshi, “Noise Estimation Using Filtering and SVD
for Image Tampering Detection,” IJESIT, vol. 2, no. 1, pp. 46–53, 2013.
[14]. K. Barker, “Singular Value Decomposition Tutorial,” 2005.
[15]. R. Wang and X. Ping, “Detection of Resampling Based on Singular Value
Công nghệ thông tin
N. H. Cường, C. T. Luyên, “Một lược đồ thủy phân rỗng mới DWT, DCT và SVD.” 132
Decomposition,” 2009 Fifth Int. Conf. Image Graph., no. 2, pp. 879–884,
Sep. 2009.
[16]. C.T. Luyen, P.V. At, N.H. Cuong, "A fast and robust watermarking scheme
using improved singular value decomposition", ACIIDS 2016, LNAI 9621,
pp. 780-789, 2016.
ABSTRACT
A NEW ZERO-WATERMARKING SCHEME
BASED ON DWT, DCT AND SVD
Nowadays, watermarking is a common method for digital image
authentication and protection. Traditional watermarking techniques need to
embed a watermark into the host image, so it can degrade the image quality.
Zero-watermarking is a new approach that does not need to directly embed
watermarks in the image. Therefore, it does not affect image quality. The
most crucial issue in zero-watermarking techniques is to design robust
features from images. This helps to validate the test images even after they
are manipulated. In this paper, we propose a new zero-watermarking scheme,
which employs SVD associated with DWT and DCT. The experimental results
show that the proposed schemes are robust against common attacks, such as
Gaussian noise addition, blurring, mean filtering, JPEG compression.
Keywords: Zero-watermarking; Copyright protection; DWT; DCT; SVD.
Nhận bài ngày 02 tháng 7 năm 2018
Hoàn thiện ngày 17 tháng 9 năm 2018
Chấp nhận đăng ngày 05 tháng 11 năm 2018
Địa chỉ: Khoa Công nghệ thông tin Trường Đại học Giao thông vận tải.
*Email: caoluyengt@gmail.com.
Các file đính kèm theo tài liệu này:
- 13_cuong_9862_2150534.pdf