Mô phỏng ba chiều linh kiện Na-Nô bán dẫn với lời giải phương trình poisson dựa trên thuật toán GPbicg - Đinh Như Thảo

Tài liệu Mô phỏng ba chiều linh kiện Na-Nô bán dẫn với lời giải phương trình poisson dựa trên thuật toán GPbicg - Đinh Như Thảo: 215 TẠP CHÍ KHOA HỌC, Đại học Huế, Số 65, 2011 MÔ PHỎNG BA CHIỀU LINH KIỆN NA-NÔ BÁN DẪN VỚI LỜI GIẢI PHƯƠNG TRÌNH POISSON DỰA TRÊN THUẬT TOÁN GPBICG Đinh Như Thảo, Dương Thị Diễm My, Nguyễn Châu Phương Thi, Ngô Thanh Thủy Trường Đại học Sư phạm, Đại học Huế TÓM TẮT Bài báo trình bày việc xây dựng chương trình giải phương trình Poisson ba chiều dựa trên thuật toán GPBICG để sử dụng trong chương trình mô phỏng linh kiện na-nô bán dẫn bằng phương pháp Monte – Carlo tập hợp tự hợp. Chương trình mô phỏng được áp dụng để mô phỏng động lực học ba chiều của hạt tải trong các đi-ốt p-i-n bán dẫn GaAs. Các kết quả mô phỏng thu được hoàn toàn phù hợp với các kết quả của các công trình đã được công bố trước đây [1, 2]. Các kết quả chỉ ra rằng, chương trình giải phương trình Poisson dựa trên thuật toán GPBICG không những có tốc độ hội tụ nhanh mà còn có tính ổn định cao hơn các chương trình từng được sử dụng [2]. Từ khóa: Mô phỏng linh kiện bán dẫn, phương trình P...

pdf9 trang | Chia sẻ: quangot475 | Lượt xem: 477 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Mô phỏng ba chiều linh kiện Na-Nô bán dẫn với lời giải phương trình poisson dựa trên thuật toán GPbicg - Đinh Như Thảo, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
215 TẠP CHÍ KHOA HỌC, Đại học Huế, Số 65, 2011 MÔ PHỎNG BA CHIỀU LINH KIỆN NA-NÔ BÁN DẪN VỚI LỜI GIẢI PHƯƠNG TRÌNH POISSON DỰA TRÊN THUẬT TOÁN GPBICG Đinh Như Thảo, Dương Thị Diễm My, Nguyễn Châu Phương Thi, Ngô Thanh Thủy Trường Đại học Sư phạm, Đại học Huế TÓM TẮT Bài báo trình bày việc xây dựng chương trình giải phương trình Poisson ba chiều dựa trên thuật toán GPBICG để sử dụng trong chương trình mô phỏng linh kiện na-nô bán dẫn bằng phương pháp Monte – Carlo tập hợp tự hợp. Chương trình mô phỏng được áp dụng để mô phỏng động lực học ba chiều của hạt tải trong các đi-ốt p-i-n bán dẫn GaAs. Các kết quả mô phỏng thu được hoàn toàn phù hợp với các kết quả của các công trình đã được công bố trước đây [1, 2]. Các kết quả chỉ ra rằng, chương trình giải phương trình Poisson dựa trên thuật toán GPBICG không những có tốc độ hội tụ nhanh mà còn có tính ổn định cao hơn các chương trình từng được sử dụng [2]. Từ khóa: Mô phỏng linh kiện bán dẫn, phương trình Poisson ba chiều, thuật toán GPBICG, phương pháp Monte – Carlo. 1. Giới thiệu Nghiên cứu và phát triển các linh kiện na-nô bán dẫn đang thu hút sự quan tâm mạnh mẽ của giới khoa học do tính ứng dụng cao của nó [1, 2, 3]. Nghiên cứu thực nghiệm các linh kiện na-nô nói chung là rất tốn kém, đòi hỏi phải sử dụng công nghệ cao và mất nhiều thời gian. Các phương pháp nghiên cứu lý thuyết có thể giúp khắc phục được các hạn chế nêu ở trên, đặc biệt là các phương pháp mô phỏng như: phương pháp Monte – Carlo tập hợp tự hợp, phương pháp các phương trình cân bằng, mô hình kéo theo – khuếch tán [4]. Trong lớp các phương pháp đó, Monte – Carlo tập hợp tự hợp có nhiều ưu điểm nổi trội đặc biệt là tính chính xác và tính ổn định. Đây là phương pháp bán cổ điển với tốc độ tán xạ được tính toán dựa trên qui tắc vàng Fermi và việc khảo sát động lực học của hạt tải dựa trên các phương trình động học của Newton. Trong quá trình mô phỏng, phương pháp Monte – Carlo tập hợp tự hợp cần cập nhật phân bố của điện thế trong linh kiện ứng với một phân bố xác định của điện tích. Phân bố điện thế trong linh kiện có thể được xác định bằng việc giải phương trình Poisson, thông thường bằng phương pháp sai phân hữu hạn [4]. Khi đó việc giải phương trình Poisson chuyển thành việc giải một hệ phương trình tuyến tính cực lớn với hàng 216 triệu phương trình và hàng triệu ẩn. Rõ ràng, việc giải hệ phương trình trên bằng một phương pháp giải tích là một việc bất khả thi và người ta phải sử dụng đến các phương pháp số. Đến nay nhiều phương pháp đã được xây dựng như: Jacobi, Gauss – Seidel, SOR, đa ô lưới (multigrid), iLU [5, 6]. Các phương pháp này có thể cho các kết quả chính xác tuy nhiên độ ổn định không cao và tốc độ hội tụ thấp. Gần đây, các phương pháp không gian con Krylov như CGS, BiCG, BICGSTAB, BICGSTAB2, BICGSTAB(l), GPBICG đã được phát triển và sử dụng như là các phương pháp hiệu quả trong việc giải các hệ phương trình tuyến tính thưa loại lớn [5]. Một số tác giả đã sử dụng phương pháp BICGSTAB để giải phương trình Poisson và đã thu được các kết quả chính xác với thời gian tính toán được rút ngắn nhiều lần [2, 7]. Đó là động lực để chúng tôi tiến hành tìm nghiệm của phương trình Poisson bằng phương pháp GPBICG, phương pháp được đánh giá là hoạt động ổn định hơn và cho kết quả nhanh hơn phương pháp BICGSTAB [8]. 2. Giải phương trình Poisson ba chiều bằng thuật toán GPBICG Giả sử vật liệu là đồng nhất thì phương trình Poisson trong trường hợp ba chiều có dạng: 2 2 2 2 2 2 , Sx y z                ở đây,  là điện thế,  là mật độ điện tích, S là hằng số điện môi tĩnh trong linh kiện; x , y , z là ba biến không gian. Để có thể dễ dàng thực hiện sai phân hữu hạn ta chia mô hình linh kiện thành các ô lưới và giả sử khoảng cách giữa các nút lưới theo các chiều không gian là bằng nhau, x y z     . Tiến hành lấy sai phân hữu hạn phương trình (1) ta thu được hệ phương trình sau: , , 2 1, , , 1, , , 1 , , 1, , , 1, , , 16 , i j k i j k i j k i j k i j k i j k i j k i j k S x                        ở đây, 1, xi N , 1, yj N , 1, zk N với xN , yN , zN lần lượt là số nút lưới theo các chiều không gian Ox , Oy , Oz . Hệ phương trình (2) có thể được viết lại dưới dạng một phương trình ma trận như sau: ,A b  (3) trong đó, ma trận A có dạng:                     1 1 2 2 2 Z 1 Z 1 Z 1 Z Z , 0 0 N N N N N b c a b c A a b c a b                     (1) (2) (4) 217 với ja   và jc   là các ma trận một đường chéo chính: , 0 0 j ja c                              còn jb   là ma trận ba đường chéo chính: 2(1 ) 1 1 2(1 ) 1 , 1 2(1 ) 1 1 2(1 ) 0 0 jb                              trong đó 2( ) 1x z     . Bảng 1. Thuật toán GPBICG để tìm nghiệm của phương trình Poisson Đây là một phương trình ma trận loại lớn và việc giải phương trình này khá phức tạp. Dù dùng phương pháp nào thì để có thể giải hệ này với cách giải thông thường ta cũng đều cần một máy tính mạnh với bộ nhớ cực lớn để có thể lưu trữ và xử lý dữ liệu. (5) (6) 218 May mắn là các phương pháp không gian con Krylov có thể hỗ trợ cách tính toán không cần lưu trữ các số liệu tính toán trung gian. Đây chính là ưu điểm lớn nhất của các phương pháp. Việc tính toán không cần dùng nhiều bộ nhớ có thể được thực hiện bằng cách khai triển các phép nhân ma trận thông qua hệ phương trình (4). Giải thuật GPBICG để tìm nghiệm của phương trình Poisson được khai triển trong Bảng 1. 3. Kết quả mô phỏng và thảo luận Mô hình cấu trúc của đi-ốt p-i-n bán dẫn GaAs gồm một lớp bán dẫn thuần (i) kẹp giữa hai lớp bán dẫn pha tạp loại p và loại n như được chỉ ra trong Hình 1. Trong đó, mỗi lớp có độ dày tương ứng là id , pd và nd . Mật độ pha tạp acceptor và donor tương ứng là AN và DN , các tạp được phân bố từ bề mặt của các lớp p và n vào sâu bên trong linh kiện theo hàm phân bố Gauss. Trạng thái cân bằng nhiệt của linh kiện được xác lập bằng mô phỏng thời gian thực trước khi chiếu xung laser vào linh kiện. Hình 1. Mô hình đi-ốt p-i-n GaAs Chúng tôi đã sử dụng phương pháp Monte – Carlo tập hợp tự hợp để mô phỏng động lực học của hạt tải trong linh kiện trong trường hợp chiếu một xung laser với chiều dài của xung là 12 sf và năng lượng photon là 1.49 eV . Các tham số cấu trúc vùng năng lượng được sử dụng như sau: 1.42gapE eV   , * 00.063em m  , * 00.45hm m  , * 00.222Lem m , và độ chêch lệch năng lượng giữa  và L 0.29LE eV  . Chúng tôi giả thiết rằng 50p nd d nm  , 340id nm và 17 30.5 10AN cm   , 17 32.5 10DN cm   và 16 35 10exN cm   sau thời gian 1 ps . Kích thước theo ba chiều không gian của đi-ốt là 440 100 100x y zL L L nm nm nm     , giả sử đi-ốt được nuôi cấy theo phương Ox . Mô hình linh kiện được chia thành các ô lưới không gian với khoảng cách giữa các nút lưới là 1050 10x y z m       . Như vậy, ta sẽ có 89xN  nút lưới theo phương Ox , 21yN  nút lưới theo phương Oy và 21zN  nút lưới theo phương Oz . Điện trường ngoài được đặt vào linh kiện dọc theo phương Ox và đi-ốt được phân cực nghịch, xem Hình 1. Hình 2 mô tả sự thay đổi vận tốc trôi dạt của điện tử theo các phương Ox , Oy và Oz và vận tốc trôi dạt toàn phần ứng với điện trường ngoài 100extE kV cm . Từ đồ 219 thị ta thấy rằng, điện tử chủ yếu chuyển động trôi dạt theo phương Ox . Vận tốc trôi dạt toàn phần của điện tử được đóng góp chủ yếu từ thành phần vận tốc theo phương Ox , còn các thành phần vận tốc theo phương Oy và phương Oz cho đóng góp không đáng kể. Đặc biệt, tại thời điểm ban đầu sau khi chiếu xung laser vận tốc trôi dạt của điện tử theo phương Ox tăng nhanh vượt xa giá trị bão hòa rồi sau đó giảm nhanh về giá trị bão hòa, hiện tượng này được gọi là sự vượt quá vận tốc [1, 4]. Hình 2. Vận tốc trôi dạt của điện tử theo các phương khác nhau và vận tốc trôi dạt toàn phần như là hàm của thời gian ứng với 100extE kV cm Hình 3. Vận tốc trôi dạt của điện tử theo phương Ox như là hàm của thời gian ứng với các điện trường ngoài khác nhau 220 Hình 3 mô tả sự phụ thuộc của vận tốc trôi dạt của điện tử theo thời gian ứng với các giá trị điện trường ngoài 70extE kV cm , 100kV cm và 130kV cm . Kết quả cho thấy, với điện trường ngoài càng cao thì sự vượt quá vận tốc xảy ra càng sớm và vận tốc càng nhanh chóng tiệm cận giá trị bão hòa. Trong cùng một khoảng thời gian, khi điện trường ngoài càng cao thì số điện tử nằm trong các trạng thái có thể tham gia vào quá trình tán xạ liên thung lũng càng lớn. Khi điện tử bị tán xạ từ thung lũng Γ sang thung lũng L vận tốc của điện tử bị giảm nhiều do khối lượng hiệu dụng của điện tử trong thung lũng L lớn hơn nhiều lần khối lượng hiệu dụng của điện tử trong thung lũng Γ. Hệ quả là vận tốc của điện tử càng giảm nhanh về giá trị bão hòa. Hình 4 cho kết quả so sánh vận tốc của điện tử thu được bằng hai chương trình mô phỏng ba chiều sử dụng thuật toán GPBICG và thuật toán BICGSTAB [2], cũng như kết quả thu được bằng chương trình mô phỏng một chiều [1]; 3 đồ thị gần như trùng nhau hoàn toàn. Điều đó cho thấy, phương pháp GPBICG hoạt động hiệu quả do chương trình một chiều đã được chứng minh là cho kết quả phù hợp với thực nghiệm. Hình 4. Vận tốc trôi dạt của điện tử theo phương Ox như là hàm của thời gian ứng với 100extE kV cm : mô phỏng ba chiều (thuật toán GPBICG, BICGSTAB), và mô phỏng một chiều (thuật toán LU) Hình 5 mô tả sự phân bố điện thế không gian trong đi-ốt p-i-n bán dẫn GaAs theo hai phương Ox và Oy tại mặt cắt 10z nm ứng với điện trường ngoài 100extE kV cm . Từ đồ thị ta thấy rằng điện thế trong linh kiện chủ yếu biến thiên theo phương Ox và gần như không đổi theo hai phương Oy và Oz . Kết quả này là hoàn toàn hợp lý do điện trường ngoài được đặt vào linh kiện theo phương Ox mà thôi. Kết quả này cũng phù hợp với các kết quả đã được công bố trước đây [1, 2]. 221 Hình 5. Phân bố điện thế không gian trong đi-ốt p-i-n bán dẫn GaAs theo hai phương Ox và Oy tại mặt cắt 10z nm ứng với 100extE kV cm Hình 6. Sự phụ thuộc của chuẩn Euclid của vectơ thặng dư vào số vòng lặp của chương trình con Poisson ứng với 100extE kV cm Để so sánh tốc độ hội tụ và tính ổn định của thuật toán GPBICG so với thuật toán BICGSTAB chúng tôi đã tiến hành khảo sát sự phụ thuộc của chuẩn Euclid của vectơ thặng dư vào số vòng lặp của chương trình con Poisson, Hình 6. Chuẩn Euclid của vectơ thặng dư được tính theo công thức [5]. 2 Tr r r , (7) với r b A  là vectơ thặng dư. Từ đồ thị ta thấy rằng, thuật toán GPBICG cần ít vòng lặp hơn để tìm ra nghiệm có cùng chuẩn Euclid của vector thặng dư với thuật toán 222 BICGSTAB, nghĩa là nó có tốc độ hội tụ nhanh hơn. Hơn thế nữa, đồ thị tương ứng với thuật toán GPBICG trơn hơn đồ thị tương ứng với thuật toán BICGSTAB, hàm ý rằng thuật toán GPBICG cho kết quả ổn định hơn thuật toán BICGSTAB. 4. Kết luận Chúng tôi đã xây dựng thành công một chương trình giải phương trình Poisson ba chiều dựa trên thuật toán GPBICG dùng để tích hợp trong chương trình mô phỏng linh kiện na-nô bán dẫn bằng phương pháp Monte – Carlo tập hợp tự hợp. Để khảo sát các đặc trưng của phương pháp chúng tôi đã tiến hành mô phỏng động lực học ba chiều của hạt tải trong các đi-ốt p-i-n bán dẫn GaAs và so sánh với các kết quả mô phỏng đã được công bố trước đây. Các kết quả chỉ ra rằng, chương trình giải phương trình Poisson dựa trên thuật toán GPBICG không những có tốc độ hội tụ nhanh mà còn có tính ổn định cao hơn các chương trình từng được sử dụng. TÀI LIỆU THAM KHẢO [1]. D. N. Thao, S. Katayama, and K. Tomizawa, Numerical simulation of THz radiation by coherent LO phonons in GaAs p-i-n diodes under high electric fields, Journal of the Physical Society of Japan 73, (2004), 3177 – 3181. [2]. L. H. Linh, 3D simulation of carrier dynamics in GaAs p-i-n diodes by means of Monte - Carlo method, Master Thesis, Hue University’s College of Education, 2009. [3]. G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, Photo-Dember terahertz emitter excited with an Er: fiber laser, Appl. Phys. Lett. 98, (2011), 021114 – 021114 - 3. [4]. K. Tomizawa, Numerical simulation of submicron semiconductor devices, Artech House, Boston London, 1993. [5]. H. A. Vorst, Iterative Krylov methods for large linear systems, Cambridge University, 2003. [6]. A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philadelphia, 1997. [7]. G. Speyer, D. Vasileska and S.M. Goodnick, Efficient Poisson equation solvers for large scale 3D simulations, Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems, Nanotech 2001, Vol. 1, (2001), 23 - 26. [8]. Shao-Liang Zhang, GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems, SIAM J. Sci. Comput., Vol 18, No. 2, (1997), 537 - 551. 223 THREE-DIMENSIONAL SIMULATION OF NANO SEMICONDUCTOR DEVICES USING GPBICG ALGORITHM FOR THE SOLUTION OF THE POISSON'S EQUATION Dinh Nhu Thao, Duong Thi Diem My, Nguyen Chau Phuong Thi, Ngo Thanh Thuy College of Pedagogy, Hue University SUMMARY The paper presents a way to build a three-dimensional Poisson solver based on GPBICG algorithm for integrating into a Monte Carlo simulation program of nano semiconductor devices. The program is used to simulate the three-dimensional carrier dynamics in GaAs p-i-n diodes. The results obtained are totally consistent with the published ones [1, 2]. The results show that GPBICG solver has not only faster convergence but also higher stability than the previous solvers [2]. Keywords: Simulation of semiconductor devices, 3D Poisson’s equation, GPBICG algorithm, Monte – Carlo method.

Các file đính kèm theo tài liệu này:

  • pdf65_20_7701_0828_2117867.pdf
Tài liệu liên quan