Tài liệu Mô hình hóa, mô phỏng và tối ưu hóa các quá trình hóa học - Hoàng Ngọc Hà: Mụ hỡnh húa, mụ phỏng và tối ưu húa
cỏc quỏ trỡnh húa học
Modeling, simulation and optimization for chemical process
Instructor: Hoang Ngoc Ha
Email: ha.hoang@hcmut.edu.vn
Bộ mụn QT&TB
Curriculum/syllabi
Seminar group
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Outline
• General introduction
– Structure and operation of chemical
engineering systems
– What is a chemical process?
– Motivation examples
• Part I: Process modeling
• Part II: Computer simulation
• Part III: Optimization of chemical
processes
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
• Structure of chemical engineering system
(Copyright â by Prof. Paul Sides at CMU, USA)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
• Conservation laws:
– Give some balance equations such as mass balance (or the molar
number by species), energy balance and momentum equation of the
system under consideration
• Equilibrium thermodynamics
– ...
50 trang |
Chia sẻ: quangot475 | Lượt xem: 600 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Mô hình hóa, mô phỏng và tối ưu hóa các quá trình hóa học - Hoàng Ngọc Hà, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Mụ hỡnh húa, mụ phỏng và tối ưu húa
cỏc quỏ trỡnh húa học
Modeling, simulation and optimization for chemical process
Instructor: Hoang Ngoc Ha
Email: ha.hoang@hcmut.edu.vn
Bộ mụn QT&TB
Curriculum/syllabi
Seminar group
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Outline
• General introduction
– Structure and operation of chemical
engineering systems
– What is a chemical process?
– Motivation examples
• Part I: Process modeling
• Part II: Computer simulation
• Part III: Optimization of chemical
processes
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
• Structure of chemical engineering system
(Copyright â by Prof. Paul Sides at CMU, USA)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
• Conservation laws:
– Give some balance equations such as mass balance (or the molar
number by species), energy balance and momentum equation of the
system under consideration
• Equilibrium thermodynamics
– The extensive variables/intensive variables
– The laws of thermodynamics
• Reaction engineering
– Reaction mechanism
– The rate of a chemical reaction
• Transport processes
– How materials and energy move from one position to another (heat
conductivity, diffusion and convection)
• Biological processes
– Transform material from one form to another (enzyme process) or
remove pollutants (environmental engineering)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
• References (complements) :
1. Sandler S. I. (1999). Chemical and Engineering
Thermodynamics. Wiley and Sons, 3rd edition.
2. H.B. Callen. Thermodynamics and an introduction to
thermostatics. JohnWiley & Sons Inc, 2nd ed. New York,
1985.
3. De Groot S. R. and P. Mazur (1962) Non-equilibrium
thermodynamics. Dover Pub. Inc., Amsterdam.
4. Vũ Bỏ Minh. (tập 4) Kỹ thuật phản ứng. NXB ĐHQG Tp. Hồ
Chớ Minh, 2004
5. Nguyễn Bin, (tập 5) Cỏc quỏ trỡnh húa học. NXB Khoa học
và Kỹ thuật, 2008
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
• Conservation laws:
– Give some balance equations such as mass balance (or the molar
number by species), energy balance and momentum equation of the
system under consideration
• Equilibrium thermodynamics
– The extensive variables/intensive variables
– The laws of thermodynamics
• Reaction engineering
– Reaction mechanism
– The rate of a chemical reaction
• Transport processes
– How materials and energy move from one position to another (heat
conductivity, diffusion and convection)
• Biological processes
– Transform material from one form to another (enzyme process) or
remove pollutants (environmental engineering)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
Operation of a chemical engineering plant
Copyright â by T. Marlin
(Σ)
Dynamical behavior
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
Oil and gas production plant
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
The system may be
Isolated: There is no transfer of
mass or energy with the
environment
∑
∑ Closed: There may be transfer ofmechanical energy and heat
Open: There is mass transfer with
the environment ∑
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
Gas
BA,
JQ
.
BA BA υυ →
Question: determinate physical volume of
the following systems?
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
What is a chemical process?
Process: A set of actions performed intentionally in order to reach
some result (Longmans Dictionary of Contemporary English)
Processes that involve energy conversion, reaction, separation
and transport are called chemical processes (Prof. Erik Ydstie at
CMU, USA)
Definition: Chemical processes are a special subclass of
processes since their behavior is constrained by a range of
laws and principles which may not apply in other
circumstances (mechanical/electrical systems)
Properties:
Highly nonlinear
Complex network
May be distributed
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
Chemical processes
Thermal conductivity process
Transport (reaction) process
CuuDuongThanCong.com https://fb.com/tailieudientucntt
General introduction
Why we need informations about dynamical
behavior?
Research and development
Process design
Process control
Plant operation
Process modeling,
computer
simulation and optimization
(Σ)
Ordinary Differential Equations
(ODEs) or Partial Differential
Equations (PDEs) or
Differential and Algebraic
Equations (DAEs)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Motivation examples
Example 1: Gravity-flow tank
The higher the flow rate F¯ , the higher h¯ will be
h
F0
F F
F0 = F0(t), h = h(t) and F = F (t)
F¯0, h¯ and F¯ : steadystate values
Overshoot
How to understand dynamical behavior to design the
system avoiding ô Overshoot ằ?
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Motivation examples
Example 2: Heat exchanger
Thermocouple
Temperature transmitter
Temperature controller
Final control element
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Motivation examples
Example 3: Typical chemical plant and control system
ắTwo liquids feeds are pumped into
a reactor
ắThey react to form products
ắReactor effluent is pumped through
a preheater into a distillation
To specify the various pieces
of equipment:
•Fluid mechanics
•Heat transfer
•Chemical kinetics
•Thermodynamics and mass
transfer
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Motivation examples
Example 4: Optimization of a silicon process
The silicon reactor
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Motivation examples
Example 4: Optimization of a silicon process
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Outline
General introduction
Structure and operation of chemical engineering
systems
What is a chemical process?
Motivation examples
Part I: Process modeling
Part II: Computer simulation
Part III: Optimization of chemical processes
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Process modeling
Introduction
Fundamental laws
Continuity equations
Energy equation
Equations of motion
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Introduction
Uses of mathematical models
Can be useful in all phases of chemical engineering, from
research and development to plant operations, and even in
business and economic studies
Research and development:
Determinating chemical kinetic mechanisms and parameters from
lab. or pilot-plant reaction data
Exploring the effects of different operating conditions
Adding in scale-up calculations
Design
Exploring the sizing and arrangement of processing equipment
Studying the interactions of various parts
Plant operation
Cheaper, safer and faster
Troubleshooting and processing problems
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Introduction
Scope of course
A deterministic system is a system in which no
randomness is involved in the evolution of states
of the system
∑
Random effects such as noise
A stochastic system is non-deterministic system
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Introduction
Principles of formulation
Basis
Fundamental physical and chemical laws such as laws
of conservation of mass, energy and momentum
Assumptions
Impose limitations ô reasonable ằ on the model
Mathematical consistency of model
Number of variables equals the number of equations
(degrees of freedom)
Units of all terms in all equations are consistent
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Introduction
Solution of the model equations
Initial and/or boundary conditions
Available numerical solution techniques and tools
Solutions are physically acceptable?
Verification
The mathematical model is proving that the model
describes the “real-world” situation
Real challenge
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Fundamental laws
Continuity equations
Total continuity equations (total mass balance)
EXERCISE ?
Component continuity equations (component balance)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Fundamental laws
Energy balance
EXERCISE ?
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Fundamental laws
Equations of motion
Pushing in the i direction (i=x,y,z)
−→
F =
d
³
M−→v
´
dt
Where −→v = velocity, −→F = total force and M = mass
Fi =
d
³
Mvi
´
dt
EXERCISE ?
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Fundamental laws
Consider a system with n components
Number of equations obtained from the
fundamental laws
n balance equations by species
1 total mass balance equation
1 energy balance equation
3 equations of motion (if the system is under
movement)
⎭⎬
⎫
Not independent
⇒ n+ 1 + (3) equations
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Constitutive equations
Reaction kinetics of
(bio)chemical reaction
Transport equations
k = k(T,C)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Other equations
As we saw, we need equations that tell us how the
physical properties, primarily density and enthalpy,
change with temperature, pressure, and
composition to rewrite alternative mathematical
models
Equations of state
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Other equations (cont.)
In some cases, simplification can be made without
sacrificing much overall accuracy
Or more complex, Cp is considered as a function of
temperature
H = CpT (liquid)
H = CpT + λv (vapor)
H =
R T
Tref
Cp(T )dT
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Other equations (cont.)
A polynomial in T is used for Cp
We obtain
Cp(T ) = A1 +A2T
H =
h
A1T +A2
T 2
2
iT
Tref
= A1(T − T0) + A22 (T 2 − T 20 )
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Other equations (cont.)
If the mixture is composed of components
(which we know the pure-component
enthalpies) then the total enthalpy can be
averaged
H =
PN
j=1 xjhjMjP
N
j=1 xjMj
xj
Mj
hj
- mole fraction of jth component
- molecular weight of jth component
- pure-component enthalpy of jth component (energy per unit mass)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Other equations (cont.)
Liquid densities can be assumed constant in
many systems
Vapor densities usually cannot be considered
invariant in many systems and the PVT
relationship is almost always required.
The simplest and most often used case is the
perfect gas law
PV = nRT ⇒ ρv = nMV = PMRT
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Examples of mathematical modeling of
chemical process
(Distributed) Transport reaction systems
De Groot S. R. and P. Mazur (1962) Non-equilibrium thermodynamics. Dover Pub. Inc.,
Amsterdam.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Examples of mathematical modeling of
chemical process
Distributed reaction systems (reactor tubular
for example)
n chemical species
Inlet material and/or
energetic flux
Outlet material
and/or energetic flux
V,Ω
P
k νkSk = 0
(Σ)
dV
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Examples of mathematical modeling of
chemical process
Mass conservation by species
dmk
dt
= d
dt
R
V
ρkdV =
R
V
∂ρk
∂t dVR
V
νkMkrvdV
⇒ ∂ρk∂t = −div(Jk) + νkMkrv
= −
R
V
div(Jk)dV Gauss theorem
Jk = vkρk
−
R
Ω Jk ã dΩ
Total m
aterial flux
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Examples of mathematical modeling of
chemical process
ρ =
P
k ρk v =
P
k Jk
ρ
Jdk = ρk(vk − v)
Jck = ρkv
⇒ Jk = Jdk + Jck
∂(
P
k ρk)
∂t = −div(
P
k Jk)
∂ρ
∂t = −div(vρ)
v = ρ−1
∂v
∂t + v ã
−→∇v = vdiv(v)
Dv
Dt
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Examples of mathematical modeling of
chemical process
J0q
= ρ (u+ pv)| {z }
=h
v + JqJu = ρuv + pv+ Jq
∂ρu
∂t = −divJu
= −
R
Ω Ju ã dΩ
P
k hkJ
c
k
P
k hkJ
d
k
dU
dt
=
R
V
∂ρu
∂t dV
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Examples of mathematical modeling of
chemical process
Seminar:
Nonisothermal CSTR
Batch reactor
pH systems
Distillation column
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Examples of mathematical modeling of
chemical process
Seminar:
Nonisothermal CSTR
Batch reactor
pH systems
Distillation column
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Sự vận chuyển trong thiết bị phản ứng của
hỗn hợp phản ứng, bao gồm:
Dũng vật liệu (khối lượng/nồng độ)
Dũng nhiệt năng (năng lượng)
Dũng động lượng (xung)
Cú dũng đối lưu, dũng dẫn, dũng cấp và
dũng phỏt sinh
Dũng đối lưu hoặc dũng dẫn cú thể tồn tại độc lập hoặc
đồng thời nhưng chỉ trong một pha
Sự võn chuyển xảy ra qua lớp biờn của hai pha là dũng
cấp
(lượng/thể tớch) Được đặc trưng bởi mật độ dũngΓ⇒
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Cỏc quỏ trỡnh vận chuyển trong thiết bị
Dũng đối lưu
Sự thay đổi vị trớ trong khụng gian của mật độ dũng
được gọi là đối lưu (dũng vận chuyển vĩ mụ)
Mật độ dũng đối lưu được biểu thị
Dũng dẫn (khuếch tỏn)
Chuyển động phõn tử trong lũng pha khớ hoặc pha lỏng
là chuyển động vi mụ tạo thành dũng dẫn
−→
j c = Γ
−→v (lượng/thời gian/diện tớch)
(lượng/thời gian/diện tớch)
−→
j d = −D
−−→
gradC
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Cỏc quỏ trỡnh vận chuyển trong thiết bị (tt)
Dũng cấp
Sự vận chuyển của đại lượng đặc trưng từ pha này
sang pha khỏc gọi là sự cấp
Cỏc quỏ trỡnh xảy ra giữa cỏc pha thường được mụ tả
bằng cỏc đại lượng quảng tớnh
(lượng/thời gian/diện tớch)
- hệ số cấp, ² - bề mặt riờng (xột trờn một đơn vị thể tớch)f
−→
j = ²f∆Γ
∆Γ- động lực
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Dũng phỏt sinh
Dũng phỏt sinh vật chất do phản ứng húa học
G =
−−→
gradP
Gj =
Pm
i=1 νjiri
Gi = (−∆Hi)ri
Dũng phỏt sinh cuả nhiệt năng do phản ứng húa học
Dũng phỏt sinh của động lượng do chờnh lệch ỏp suất
Được hỡnh thành do sự thay đổi của ỏp suất trong hệ, tức
là cú tỏc dụng của xung lực
Cỏc quỏ trỡnh vận chuyển trong thiết bị (tt)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Xột trường hợp hệ tổng quỏt (đồng thể hay
dị thể) cú phản ứng húa học
n chemical species
Inlet material and/or
energetic flux
Outlet material
and/or energetic flux
dVP
j νijSj = 0
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Phương trỡnh cõn bằng tổng quỏt cú dạng của
phương trỡnh vi phần riờng phần được
Damkửhler thiết lập (1936)
−→
j c
−→
j d
Dũng cấp
Dũng
phỏt sinh
∂Γ
∂t = −div(−→v Γ) + div(δ
−−→
gradΓ)− ²f∆Γ+G
Γ = ρ Cj ρCpT ρ
−→v
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Viết lại cỏc phương trỡnh cõn bằng
∂Γ
∂t = −div(−→v Γ) + div(δ
−−→
gradΓ)− ²f∆Γ+G
∂ρ
∂t = −div(−→v ρ) + div(D?
−−→
gradρ)− β?f∆ρ+G
∂ρ−→v
∂t = −div(−→v ◦ ρ−→v ) + div(ν
−−→
gradρ−→v )
−γf∆(ρ−→v ) +G
∂ρCpT
∂t = −div(−→v ρCpT ) + div(αT
−−→
gradρCpT )
−α?f∆ρCpT +G
∂Cj
∂t = −div(−→v Cj) + div(D
−−→
gradCj)
−βjf∆Cj +Gj
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Phương trỡnh dũng
Example: xem chương 5, tập 5 (sỏch Cỏc
quỏ trỡnh, thiết bị TRONG CễNG NGHỆ
HểA CHẤT VÀ THỰC PHẨM, Nguyễn Bin)
Mụ hỡnh toỏn cho hệ khuấy lý tưởng
Chuỗi thiết bị khuấy lý tưởng
Thiết bị khuấy giỏn đoạn
Thiết bị đẩy lý tưởng
Cỏc bài toỏn thực tế
∂Γ
∂t = −div(−→v Γ) + div(δ
−−→
gradΓ)− ²f∆Γ+G
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Outline
General introduction
Structure and operation of chemical engineering
systems
What is a chemical process?
Motivation examples
Part I: Process modeling
Part II: Computer simulation
Part III: Optimization of chemical processes
Ref.: Burden R. L. and Faires J. D. Numerical analysis.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Các file đính kèm theo tài liệu này:
- mo_hinh_hoa_hoang_ngoc_ha_bai_giang_mo_hinh_hoa_5519_2179197.pdf