Tài liệu Luận văn Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm: ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
TRẦN LÊ HỒNG DŨ
PHÁT HIỆN KHUÔN MẶT
DỰA TRÊN ĐẶC TRƯNG LỒI LÕM
LUẬN VĂN THẠC SĨ NGÀNH TIN HỌC
Thành phố Hồ Chí Minh - 2005
ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
TRẦN LÊ HỒNG DŨ
PHÁT HIỆN KHUÔN MẶT DỰA TRÊN
ĐẶC TRƯNG LỒI LÕM
Chuyên ngành: TIN HỌC
Mã số: 1.01.10
LUẬN VĂN THẠC SĨ
(Chuyên ngành Tin học)
NGƯỜI HƯỚNG DẪN KHOA HỌC:
GS. DƯƠNG NGUYÊN VŨ
Thành phố Hồ Chí Minh - 2005
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 1
Nội dung
Trang
Mục lục 1
Lời cám ơn 4
Chương 1. Giới thiệu 5
1.1 Bài toán nhận dạng mặt người và những khó khăn 5
1.1.1 Bài toán nhận dạng mặt người 5
1.1.2 Những khó khăn của nhận dạng khuôn mặt 5
1.2 Các ứng dụng liên quan đến nhận dạng mặt người 6
1.3 Tổng quan kiến trúc của một hệ thống nhận dạng mặt người 7
1.4 Xác định phạm vi đề tài 8
Chương 2. Các công trình liên quan 10 ...
58 trang |
Chia sẻ: hunglv | Lượt xem: 1124 | Lượt tải: 1
Bạn đang xem trước 20 trang mẫu tài liệu Luận văn Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
TRẦN LÊ HỒNG DŨ
PHÁT HIỆN KHUÔN MẶT
DỰA TRÊN ĐẶC TRƯNG LỒI LÕM
LUẬN VĂN THẠC SĨ NGÀNH TIN HỌC
Thành phố Hồ Chí Minh - 2005
ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
TRẦN LÊ HỒNG DŨ
PHÁT HIỆN KHUÔN MẶT DỰA TRÊN
ĐẶC TRƯNG LỒI LÕM
Chuyên ngành: TIN HỌC
Mã số: 1.01.10
LUẬN VĂN THẠC SĨ
(Chuyên ngành Tin học)
NGƯỜI HƯỚNG DẪN KHOA HỌC:
GS. DƯƠNG NGUYÊN VŨ
Thành phố Hồ Chí Minh - 2005
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 1
Nội dung
Trang
Mục lục 1
Lời cám ơn 4
Chương 1. Giới thiệu 5
1.1 Bài toán nhận dạng mặt người và những khó khăn 5
1.1.1 Bài toán nhận dạng mặt người 5
1.1.2 Những khó khăn của nhận dạng khuôn mặt 5
1.2 Các ứng dụng liên quan đến nhận dạng mặt người 6
1.3 Tổng quan kiến trúc của một hệ thống nhận dạng mặt người 7
1.4 Xác định phạm vi đề tài 8
Chương 2. Các công trình liên quan 10
2.1 Các hướng tiếp cận liên quan đến phát hiện và nhận dạng khuôn mặt 10
2.2 Các tiếp cận liên quan đến phân tích đặt trưng lồi lõm 11
2.3 Các hướng tiếp cận sử dụng đặc trựng tựa lồi lõm cho
phát hiện khuôn mặt 12
2.4 Nhận xét về các hướng tiếp cận hiện tại 12
Chương 3. Đặc trưng lồi lõm 14
3.1 Lồi và Lõm 14
3.2 Rút trích vùng lồi và vùng lõm 16
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 2
3.2.1 Điểm lồi và điểm lõm 16
3.2.2 Dò tìm và rút trích vùng lồi và vùng lõm 16
3.2.3 Dò tìm và phát hiện vùng lồi, lõm ở nhiều mức 19
3.2.4 Tối ưu tốc độ của việc dò tìm 21
3.3 Xây dựng cây cấu trúc lồi lõm 22
3.4 Xây dựng hàm tính độ tương đồng giữa hai cây 26
3.4.1 Độ tương đồng giữa 2 nút trên cây 26
3.4.2 Độ tương đồng giữa hai cây 27
3.4.3 Không gian cây và khoảng cách giữa hai cây 28
Chương 4. Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm 30
4.1 Tập mẫu học 30
4.2 Mô hình thống kê 31
4.2.1 Gán nhãn 31
4.2.2 Thống kê 32
4.2.3 Đánh giá dùng cho phát hiện khuôn mặt 33
4.2.4 Hậu xử lý 34
4.3 Cơ sở lý thuyết của mô hình 35
Chương 5. Thử nghiệm và kết quả 38
5.1 Thử nghiệm 38
5.2 Kết quả 38
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 3
5.3 Nhận xét 39
5.4 Một số kết quả tiêu biểu 40
Chương 6. Kết luận và hướng phát triển 46
6.1 Kết luận 46
6.2 Hướng phát triển 46
Danh mục công trình của tác giả 48
Tài liệu tham khảo 49
Phụ lục 53
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 4
LỜI CẢM ƠN
Sau một thời gian học tập và nghiên cứu, cuối cùng tôi cũng đã hoàn thành
bài luận nghiên cứu của mình. Đây là thời điểm tốt nhất tôi có dịp được bày tỏ lòng
biết ơn của mình đến những người thân đã giúp đỡ động viên tôi trong suốt quá trình
tôi thực hiện bài luận này.
Trước tiên tôi xin chân thành gởi lời cảm ơn sâu sắc đến thầy tôi, người
hướng dẫn khoa học, định hướng nghiên cứu cho tôi trong suốt thời gian thực hiện
luận văn này, GS.Dương Nguyên Vũ. Thầy đã dạy cho tôi không chỉ những kiến thức
khoa học mà còn cả những bài học về cuộc sống, về tình người. Cám ơn thầy đã
mang đến cho tôi những đôi cánh để tôi có thể đến với khoa học thật sự.
Xin chân thành cảm ơn thầy Đức, TS. Dương Anh Đức, thầy Bắc, PGS.TS Lê
Hoài Bắc đã tận tình giúp đỡ, theo dõi và động viên cho tôi trong suốt quá trình thực
hiện luận văn này.
Con xin cám ơn bà ngoại, ba, mẹ, anh hai, chị ba đã hết sức thông cảm và
chia sẽ với con những khó khăn trong lúc làm luận văn này.
Xin cám ơn những người bạn thân yêu, những người đã yêu mến, chia sẽ với
tôi trong lúc tôi thực hiện luận văn này.
Xin cám ơn các thầy cô, các anh chị và các bạn đồng nghiệp trong Khoa Công
nghệ thông tin, ĐH Khoa học tự nhiên đã giúp đỡ, tạo điều kiện tốt nhất để tôi có thể
hoàn thành tốt luận văn này.
Luận văn này là món quà mà tôi dành tặng cho tất cả mọi người thân yêu của
tôi, với tất cả tấm lòng mình!
Thành phố Hồ Chí Minh, ngày 10 tháng 11 năm 2005
Trần Lê Hồng Dũ
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 5
CHƯƠNG 1
GIỚI THIỆU
1.1 Bài toán nhận dạng mặt người và những khó khăn
1.1.1 Bài toán nhận dạng mặt người
Hệ thống nhận dạng mặt người là một hệ thống nhận vào là một ảnh hoặc một
đoạn video (một chuỗi các ảnh). Qua xử lý tính toán hệ thống xác định được vị trí
mặt người trong ảnh (nếu có) và xác định là người nào trong số những người hệ
thống đã được biết (qua quá trình học) hoặc là người lạ.
Hình 1.1 Ví dụ về hệ thống nhận dạng mặt người
1.1.2 Những khó khăn của nhận dạng khuôn mặt
Bài toán nhận dạng mặt người là bài toán đã được nghiên cứu từ những năm
70. Tuy nhiên, đây là một bài toán khó nên những nghiên cứu hiện tại vẫn chưa đạt
được kết quả mong muốn. Chính vì thế vấn đề này vẫn đang được nhiều nhóm trên
Hệ thống nhận
dạng mặt người
Ảnh input
Ảnh output Face ID
G. Bush
Bin Laden
Chưa biết
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 6
thế giới quan tâm nghiên cứu. Khó khăn của bài toán nhận dạng mặt người có thể kể
như sau:
a. Tư thế, góc chụp: Ảnh chụp khuôn mặt có thể thay đổi rất nhiều bởi vì góc
chụp giữa camera và khuôn mặt. Chẳng hạn như: chụp thẳng, chụp xéo bên trái 450
hay xéo bên phải 450, chụp từ trên xuống, chụp từ dưới lên, v.v...). Với các tư thế
khác nhau, các thành phần trên khuôn mặt như mắt, mũi, miệng có thể bị khuất một
phần hoặc thậm chí khuất hết.
b. Sự xuất hiện hoặc thiếu một số thành phần của khuôn mặt: Các đặc
trưng như: râu mép, râu hàm, mắt kính, v.v... có thể xuất hiện hoặc không. Vấn đề
này làm cho bài toán càng trở nên khó hơn rất nhiều.
c. Sự biểu cảm của khuôn mặt: Biểu cảm của khuôn mặt người có thể làm
ảnh hưởng đáng kể lên các thông số của khuôn mặt. Chẳng hạn, cùng một khuôn mặt
một người, nhưng có thể sẽ rất khác khi họ cười hoặc sợ hãi,v.v...
d. Sự che khuất: Khuôn mặt có thể bị che khuất bởi các đối tượng khác hoặc
các khuôn mặt khác.
e. Hướng của ảnh: Các ảnh của khuôn mặt có thể biến đổi rất nhiều với các
góc quay khác nhau của trục camera. Chẳng hạn chụp với trục máy ảnh nghiêng làm
cho khuôn mặt bị nghiêng so với trục của ảnh.
f. Điều kiện của ảnh: Ảnh được chụp trong các điều kiện khác nhau về: chiếu
sáng, về tính chất camera (máy kỹ thuật số, máy hồng ngoại,v.v...) ảnh hưởng rất
nhiều đến chất lượng ảnh khuôn mặt.
1.2 Các ứng dụng liên quan đến nhận dạng mặt người
Bài toán nhận dạng mặt người có thể áp dụng rộng rãi trong nhiều ứng dụng
thực tế khác nhau. Đó chính là lý do mà bài toán này hấp dẫn rất nhiều nhóm nghiên
cứu trong thời gian dài. Các ứng dụng liên quan đến nhận dạng mặt người có thể kể
như:
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 7
- Hệ thống phát hiện tội phạm: camera được đặt tại một số điểm công cộng
như: siêu thị, nhà sách, trạm xe buýt, sân bay,v.v... Khi phát hiện được sự xuất hiện
của các đối tượng là tội phạm, hệ thống sẽ gởi thông điệp về cho trung tâm xử lý.
- Hệ thống theo dõi nhân sự trong một đơn vị: giám sát giờ ra vào của từng
nhân viên và chấm công.
- Hệ thống giao tiếp người máy: thay thế việc tương tác giữa người và máy
theo những cách truyền thống như: bàn phím, chuột,v.v...Thay vào đó là sử dung các
giao tiếp trực quan: biểu cảm khuôn mặt, dấu hiệu, cử chỉ bằng tay (visual input,
visual interaction).
- Hệ thống tìm kiếm thông tin trên ảnh, video dựa trên nội dung (chỉ mục theo
người). Chẳng hạn như: đài truyền hình Việt Nam (VTV) có một kho dữ liệu video
tin tức khá lớn cần tìm kiếm nhanh những đoạn video nào có G. Bush hoặc Bin
Laden.
- Các thệ thống bảo mật dựa trên thông tin trắc sinh học: mặt người, vân
tay,v.v... thay vì xác nhận mật khẩu, khóa,v.v...
1.3 Tổng quan kiến trúc của một hệ thống nhận dạng mặt người
Một hệ thống nhận dạng mặt người thông thường bao gồm bốn bước xử lý
sau: phát hiện khuôn mặt (face detection), phân đoạn khuôn mặt (face alignment hay
segmentation), rút trích đặc trưng (feature extraction), và phân lớp khuôn mặt (face
classification).
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 8
Hình 1.2 Các bước chính trong một hệ thống nhận dạng mặt người
Phát hiện khuôn mặt dò tìm và định vị những vị trí khuông mặt xuất hiện
trong ảnh hoặc trên các frame video. Phân đoạn khuôn mặt sẽ xác định vị trí mắt mũi,
miệng, và các thành phần khác của khuôn mặt và chuyển kết quả này cho bước rút
trích đặc trưng. Từ những thông tin về các thành phần trên khuôn mặt, chúng ta có
thể dễ dàng tính được véc-tơ đặc trưng trong bước rút trích đặc trưng. Những véc-tơ
đặc trưng này sẽ là dữ liệu đầu vào cho một mô hình đã được huấn luyện trước để
phân loại khuôn mặt. Bên cạnh những bước chính nêu trên, chúng ta còn có thể áp
dụng thêm một số bước khác như tiền xử lý, hậu xử lý nhằm làm tăng độ chính xác
cho hệ thống. Do một số thông số như: tư thế khuôn mặt, độ sáng, điều kiện ánh sáng,
v.v…, phát hiện khuôn mặt được đánh giá là bước khó khăn và quan trọng nhất so
với các bước còn lại của hệ thống. Trong luận văn này, chúng tôi tập trung chủ yếu
vào bước phát hiện khuôn mặt.
1.4 Xác định phạm vi đề tài
Trong đề tài này, chúng tôi tập trung tìm kiếm và đề xuất một thuật toán hiệu
quả cho việc xác định sự xuất hiện và định vị khuôn mặt nếu có trong ảnh. Do các
điều kiện khó khăn của bài toán (nêu trong phần 1.1.2), chúng tôi đưa ra những giả
định và ràng buộc sau nhằm giảm độ phức tạp của bài toán phát hiện khuôn mặt:
- Thuật toán giải quyết cho ảnh đơn (chưa xử lý cho video)
- Ảnh khuôn mặt được chụp thẳng hay góc nghiêng không đáng kể (không
quá 100).
Phát hiện
khuôn mặt
(Theo dõi)
Phân đoạn
khuôn mặt
Rút trích
đặc trưng
Phân lớp
khuôn mặt
Ảnh/Video
Vị trí
khuôn mặt
Khuôn mặt đã
được phân đoạn
Véc-tơ
đặc trưng
Chỉ số
khuôn mặt
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 9
- Ảnh được chụp trong điều kiện ánh sáng bình thường (không chụp ngược
sáng, chụp bằng máy ảnh kỹ thuật số)
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 10
CHƯƠNG 2
CÁC CÔNG TRÌNH LIÊN QUAN
2.1 Các hướng tiếp cận liên quan đến phát hiện và nhận dạng
khuôn mặt
Có rất nhiều hướng tiếp cận trước đây đã thực hiện liên quan đến vấn đề phát
hiện mặt người. Theo Ming-Hsuan Yang [1], có thể phân loại thành bốn hướng tiếp
cận chính: dựa trên tri thức (knowledge-based), đặc trưng bất biến (feature invariant),
đối sánh mẫu (template matching), và dựa vào diện mạo (appearance-based) phương
pháp này thường dùng một mô hình máy học nên còn được gọi là phương pháp dựa
trên máy học (machine learning-based).
Các phương pháp dựa trên tri thức: Hướng tiếp cân này chủ yếu dựa trên
những luật được định nghĩa trước về khuôn mặt người. Những luật này thường là các
mối quan hệ giữa các thành phần trên khuôn mặt. Có một số nghiên cứu từ rất sớm đã
áp dụng phương pháp này như của Kanade 1973 [18], G .Yang 1994 [11], và
Kotropoulos 1997 [14].
Hướng tiếp cận dựa trên các đặc trưng bất biến: Hướng tiếp cận này cố
gắng tìm kiếm những đặc trưng độc lập – những đặc trưng không phụ thuộc vào tư
thế khuôn mặt, điều kiện chiếu sáng, và các khó khăn khác. Các đặc trưng như thế
được gọi là bất biến và được sử dụng để phát hiện khuôn mặt. Những công trình sử
dụng hướng tiếp cận này có thể kể như: K. C. Yow và R. Cipolla 1997 [12], T. K.
Leung 1995 [13].
Phương pháp đối sánh mẫu: Trong hướng tiếp cận này, một mẫu khuôn mặt
chuẩn được định nghĩa bằng tay trước hoặc được tham số hóa bằng một hàm số. Mẫu
này được sử dụng để phát hiện khuôn mặt bằng cách quét nó qua ảnh và tính toán giá
trị tương đồng cho mỗi vị trí. Việc xuất hiện một khuôn mặt tại một vị trí nào đó
trong ảnh phụ thuộc vào giá trị tương đồng của điểm đó so với mẫu chuẩn. I. Craw
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 11
1992 [17] đã áp dụng một mẫu cứng trong khi A. Lanitis 1995 [15] sử dụng một mẫu
có thể biến dạng trong bước phát hiện khuôn mặt.
Phương pháp dựa trên máy học: Ngược với phương pháp đối sánh mẫu sử
dụng các mẫu được các chuyên gia định nghĩa trước, phương pháp này sử dụng
những mẫu được rút trích qua một quá trình học. Nói cách khác, các thuật toán dựa
trên máy học dùng các kỹ thuật phân tích thống kê và máy học để xấp xĩ một hàm
phân lớp tuyến tính. Có nhiều mô hình máy học được áp dụng trong hướng tiếp cận
này: Eigenface (M. Turk và A. Pentland 1991 [16]), Mô hình dựa trên phân phối (K.
K. Sung and T. Poggio 1998 [6]), Mạng Nơ-ron (H. Rowley 1998 [7]), Support
Vector Machine (E. Osuna et al 1997 [10]), Phân lớp Bayes (H. Schneiderman và T.
Kanade 1998 [8]), Mô hình Markov ẩn (A. Rajagopalan et al 1998 [9]), và các mô
hình tăng cường (AdaBoost của P. Viola và M. Jones 2001 [4][5]; FloatBoost do Stan
Z. Li và Zhen Qiu Zhang 2004 [2][3]).
2.2 Các tiếp cận liên quan đến phân tích đặt trưng lồi lõm
Năm 1983, James L. Crowley đã đưa ra khái niệm ridge và peak [19][20].
Ridge là các điểm lồi trên ảnh. Tập các điểm ridge trên ảnh sẽ tạo thành những đường
xương sống và các đường này sẽ tạo thành các chùm tia gọi là peak (chùm). James L.
Crowley sử dụng phép hiệu của lọc Low Pass để rút ra các điểm ridge (lồi) trên ảnh,
và sau đó một thuật toán duyệt để kết chúng lại với nhau thành các đặc trưng ridge và
peak. Tiếp sau đó, một số các phương pháp được đề xuất để rút trích các thông tin về
ridge và valley (lõm) [23][24][25][26][27][29]. Hầu hết các phương pháp này dùng
một bộ lọc để tăng cường thông tin về cạnh trên ảnh sau đó dò tìm quỹ tích các điểm
cực trị. Quỹ tích các điểm cực trị này được xem là các đặc trưng lồi và lõm. Trong
[23] đặc trưng lồi và lõm được dò tìm trên nhiều độ phân giải khác nhau, cho kết quả
đáng kể. Tuy nhiên, chất lượng của các đặc trưng lồi lõm này còn phụ thuộc khá
nhiều vào điều kiện chiếu sáng cũng như các mức phân giải được lựa chọn trước. Để
giải quyết sự phụ thuộc này, Lindeberg [30] đã đề xuất một phương pháp tự động
chọn độ phân giải tốt nhất. Gần đây Hải Trần [21][22] đưa ra một cách tiếp cận sử
dụng Laplacian để tăng cường thông tin cạnh sau đó dò tìm ridge và peak dưới nhiều
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 12
mức khác nhau. Trong hướng tiếp cận này, các đặc trưng ridge và peak được biểu
diễn dưới dạng các đồ thị quan hệ hoặc các cây cấp bậc với các tầng là các ridge và
peak được dò tìm tại các mức khác nhau.
2.3 Các hướng tiếp cận sử dụng đặc trựng tựa lồi lõm cho phát
hiện khuôn mặt
Áp dụng đặc trưng tương tự cho bài toán phát hiện khuôn mặt, có hướng tiếp
cận của Quan Yuan [28]. Quan Yuan đưa ra một khái niệm mới gọi là đặc trưng tựa
thung lũng hay có dạng lõm (valley-like feature). Đặc trưng này dựa trên hiệu mức
sáng của các điểm xung quanh và điểm đang xét ở trung tâm để xác định xem điểm
này có dạng lõm hay không. Các điểm xung quanh được thiết kế hình dạng khá đặc
biệt để phát hiện hai mắt và miệng của khuôn mặt. Mặt dù hướng tiếp cận này khá
hấp dẫn, tuy nhiên đặc trưng này quá đặc biệt đối với một số điều kiện thu, chụp ảnh
cụ thể.
2.4 Nhận xét về các hướng tiếp cận hiện tại
Các hướng tiếp cận trình bày trong phần 2.1 cho thấy khá tổng quát và ổn
định, nhưng vẫn còn một vài hạn chế nhất định. Hầu hết các hướng tiếp cận nêu trên
sử dụng các đặc trưng chủ yếu dựa trên độ sáng điểm ảnh, với mức độ ý niệm ngữ
nghĩa thấp. Vì vậy, các mối quan hệ giữa các đặc trưng rút trích được cần phải thêm
vào các luật heuristic để phân tích hiệu quả hơn. Mặt khác, nếu không có các tri thức
bổ sung được định nghĩa trước, các mô hình có cấp ý niệm thấp này không thể đạt
được độ chính xác cao hơn trong nhận dạng mặt người. Vì thế, để đạt độ chính xác
cao hơn trong nhận dạng mặt người, chúng ta cần phải hướng đến một loại đặc trưng
dựa trên mô hình ý niệm cao hơn như là cấu trúc của khuôn mặt.
Để giải quyết khó khăn nêu trên, trong luận văn này chúng tôi đề xuất một đặc
trưng có mô hình ý niệm cao hơn: lồi và lõm tại nhiều mức. Theo cách tiếp cận này,
cấu trúc khuôn mặt được biểu diễn bằng một cây cấp bậc của các lồi (chỏm) và lõm
(thung lũng). Dựa trên đặc trưng này, chúng tôi áp dụng một mô hình thống kê để xác
định, phát hiện khuôn mặt. Trong luận văn này, chúng tôi tập trung chính vào bài
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 13
toán phát hiện khuôn mặt mà không giải quyết bài toán nhận dang. Tuy nhiên, trong
phần cuối, chúng tôi sẽ thảo luận chi tiết hơn khả năng sử dụng đặc trưng này để nhận
dạng khuôn mặt cũng như việc mở rộng đặc trưng này cho bài toán rộng hơn: phân
loại đối tượng dựa theo cấu trúc.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 14
CHƯƠNG 3
ĐẶC TRƯNG LỒI LÕM
3.1 Lồi và Lõm
Hiểu theo nghĩa thật sự của nó, lồi (chỏm) là các điểm cao nhất trên dãy núi và
lõm (thung lũng) là các điểm có độ cao thấp nhất. Trong ảnh vệ tinh, lồi là đường
xương sống của dãy núi, còn lõm là đường khe chạy giữa hai dãy núi. Trong ảnh y tế,
lồi có thể là các đường mạch máu hay các cơ quan nhô cao và lõm là các thành phần
trũng xuống. Còn trong ảnh khuôn mặt, mũi và các phần nhô của hai má được coi
như là lồi và các phần hốc mắt được coi là lõm.
Trong [21][22], Hải Trần sử dụng một bộ lọc Laplacian-of-Gaussian, sau đó
áp dụng một thuật toán để dò tìm quỹ tích của các điểm cực trị. Hình 3.1 và 3.2 biểu
diễn các đặc trưng lồi và lõm tương tự như kết quả của Hải Trần. Các điểm lồi được
tô màu đỏ và lõm được tô màu xanh. Chúng ta lưu ý rằng các điểm lồi và lõm rút
trích được chỉ biểu diễn được các vùng lồi và lõm nhỏ, chi tiết, chẳng hạn như: mắt,
chân mày, mũi, và miệng.
(a) Ảnh gốc
(b) Ảnh ridge và valley
Hình 3.1 Dò tìm thông tin lồi và lõm trên ảnh vệ tinh sử dụng LoG với σ = 2
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 15
Mục tiêu nghiên cứu của chúng tôi là dò tìm các đặc trưng lồi và lõm tại các
mức khác nhau. Ví dụ như, tại mức thấp nhất, chúng tôi cần dò tìm các đặc trưng lồi
lõm có kích thước nhỏ và chi tiết như mắt, mũi, v.v... Trong những mức độ cao hơn
kế tiếp, chúng tôi sẽ dò tìm các vùng lồi và lõm lớn hơn. Đến mức độ lớn nhất, toàn
bộ khuôn mặt có thể trở thành một vùng lồi. Nói cách khác, ở mức lớn sẽ dò được
vùng lồi và lõm kích thước lớn và ít chi tiết hơn. Ý tưởng nghiên cứu này đến một
cách tự nhiên, cũng giống như khi nhìn một người từ rất xa, ta chỉ có thể nhìn được
dáng, gần hơn một tí ta có thể nhìn được mặt nhưng không nhìn được các chi tiết mắt,
mũi, miệng trên khuôn mặt, và gần hơn nữa ta mới có thể nhìn chi tiết mắt mũi,
miệng. Việc này tương ứng với cách tiếp cận phân tích nhiều mức khác nhau của
chúng tôi.
Do bộ lọc Laplacian-of-Gaussian chỉ có thể sử dụng để phát hiện thông tin
cạnh qua các điểm biên (zero crossing), nên nó không thể dùng cho việc phát hiện
các vùng lồi và lõm khi các thông tin cạnh biên bị đứt nét. Trong phần tiếp theo
chúng tôi sẽ đề xuất một phương pháp đơn giản để rút trích các vùng lồi và lõm.
(a) Ảnh gốc (b) Ảnh ridge và valley
Hình 3.2 Dò tìm thông tin lồi và lõm trên ảnh khuôn mặt sử dụng LoG với σ = 2
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 16
3.2 Rút trích vùng lồi và vùng lõm
3.2.1 Điểm lồi và điểm lõm
Gọi ),( yxI là một hàm hai biến biểu diễn một ảnh I. Hàm số này thiết lập một
mặt )),(,,( yxIyx . Mục tiêu của chúng ta là dò tìm các điểm có khả năng là điểm lồi
hoặc điểm lõm trên mặt này. Một cách chính xác theo toán học, điểm lồi và lõm là
những điểm mà tại đó cả hai đạo hàm 2
2
x
I
∂
∂ và 2
2
y
I
∂
∂ đạt cực trị. Trên thực tế, do ảnh là
một hàm số không liên tục, hàm rời rạc do sự số hóa của máy tính, vì vậy sẽ rất khắt
khe nếu chúng ta chỉ dò tìm các điểm cực trị. Và chúng ta sẽ bị mất một số thông tin
của các điểm ảnh lồi và lõm cũng như những điểm lân cận chúng. Chúng tôi đưa ra
các công thức sau đây nhằm giảm bớt các điều kiện ràng buộc đối với điểm lồi và
điểm lõm:
}0),(),(),{( >∧≥= yxLoGyxLoGyxRP δ (3.1)
}0),(),(),{( <∧≥= yxLoGyxLoGyxVP δ (3.2)
Trong công thức 3.1 và 3.2, RP là tập các điểm lồi và VP là tập các điểm lõm.
Ký hiệu ),( yxLoG là giá trị của Laplacian-of-Gaussian tại điểm ),( yx . Như đã trình
bày trong phần 3.1, mục đích của chúng tôi là rút trích các vùng lồi và lõm chứ không
chỉ rút trích điểm lồi và điểm lõm. Vì thế chúng tôi đã mở rộng công thức 3.1 và 3.2
cho phù hợp với bài toán rút trích vùng.
3.2.2 Dò tìm và rút trích vùng lồi và vùng lõm
Để đánh giá một vùng có phải là lồi, là lõm hoặc không lồi cũng không lõm,
chúng tôi đề xuất một bộ lọc như sau:
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 17
(a) Vùng đang xét trên ảnh
(b) một bộ lọc
vuông
Hình 3.3 Dò tìm vùng trên ảnh
Ứng với vùng đang xét – một hình vuông ss× , chúng ta tính giá trị của bộ
lọc trên vùng này theo công thức 3.3. Đạt S1, S2, S3, và S4 là các hình chữ nhật đen
xung quanh hình vuông R (Hình 3.3b), giá trị lọc F(R) được định nghĩ như sau:
∑
=
−=
4
1
)()(2)(
i
iSsumRsumRF (3.3)
Trong công thức 3.3, hàm sum(X) là hàm tổng giá trị độ sáng trong vùng X.
Dựa trên giá trị F(R) vừa tính được, chúng ta đánh giá xem vùng R là lồi hay lõm
theo công thức sau:
⎪⎩
⎪⎨
⎧
<∧≥⇔
>∧≥⇔
=
otherwisenormal
RFRFvalley
RFRFridge
R 0)()(
0)()(
δ
δ
(3.4)
Công thức 3.4 là công thức mở rộng của 3.1 và 3.2 nhằm để dò tìm các vùng
lồi và lõm trên ảnh. Sự khác biệt chủ yếu ở chổ ta sử dụng bộ lọc hiệu trong 3.4 thay
vì sử dụng Laplacian-of-Gaussian trong 3.1 và 3.2. Chúng ta để ý rằng, bằng cách
thay kích thước S của vùng đang xét, hay nói cách khác là kích thước của lọc, chúng
ta có thể dò tìm các vùng lồi và lõm ứng với nhiều kích cở, mức độ khác nhau. Ngoài
ra, để dò tìm và rút trích các vùng lồi lõm có hình dạng khác nhau, chúng tôi sử dụng
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 18
một tập các lọc hình học có hình dạng như trong hình 3.4 thay vì chỉ sử dụng một bộ
lọc vuông.
(a) Lọc hình vuông
(b) Lọc chữ nhật ngang
(c) Lọc chữ nhật đúng
Hình 3.4 Tập các bộ lọc kích thước S
Với sự bổ sung tập bộ lọc như trên, công thức 3.3 được viết lại như sau:
∑
=
−=
4
1
)()(2)(
i
iS SsumRsumRF (3.5)
∑
=
−=
4
1
)(2)(3)(
i
iR SsumRsumRF (3.6)
)(RFS được sử dụng để tính gia trị lọc vuông còn )(RFR được sử dụng để tính
giá trị các lọc hình chữ nhật. Chúng ta dễ dàng nhận thấy rằng các công thức tính lọc
đều tương tự với công thức của một Laplacian, nhưng có một chút khác biệt là sử
dụng vùng thay vì từng điểm đơn. Trong công thức 3.5 và 3.6, hệ số đứng trước hàm
sum(R) có được là do tỷ lệ giữa diện tích vùng ở tâm (vùng đang xét) và tổng diện
tích của vùng lân cận. Trong hình 3.4a, tổng diện tích của các vùng đen xung quanh
gấp đôi diện tích phần ở giữa, vì vậy chúng ta có hệ số 2. Trong hình 3.4b và 3.4c,
tổng diện tích các vùng đen gấp rưỡi diện tích phần hình chữ nhật ở giữa. Một cách
chính xác chúng ta phải dùng hệ số 1.5 trước hàm sum(R), nhưng việc tính toán trên
số thực rất chậm, do đó để tăng tốc độ tính toán ta dùng 2 hệ số nguyên là 3 và 2 thay
vì chỉ dùng 1 hệ số 1.5.
Một thông số quan trọng khác trong công thức 3.4 là ngưỡng δ. Ngưỡng δ
phải phụ thuộc tuyến tính vào diện tích của vùng đang xét. Chúng tôi sử dụng
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 19
2
1 KS=δ đối với lọc hình vuông có kích thước S và 22 4KS=δ đối với các lọc hình
chữ nhật có kích thước S. K là một thông số thực nghiệm. Ngưỡng δ1 là tích của K và
S2 – diện tích của lọc vuông. Tương tự, trong 3.6, chúng ta đã gấp đôi giá trị của
FR(R) để tránh chuyện tính toán trên số thực. Vì thế, chúng ta cũng phải gấp đôi
ngưỡng δ2 để tăng độ chính xác của việc đánh giá.
3.2.3 Dò tìm và phát hiện vùng lồi, lõm ở nhiều mức
Chúng tôi giới thiệu một phương pháp sử dụng các lọc hiệu ở nhiều mức khác
nhau để dò tìm các vùng lồi và lõm. Các lọc được giới thiệu trong phần trước sẽ được
sử dụng với nhiều kích thước khác nhau vì vậy chúng sẽ dò tìm được các vùng lồi
lõm ở nhiều mức khác nhau.
(a) σ = 10, ảnh sau khi smoth bằng
Gaussian 210
(b) Các vùng lồi lõm dò tìm với lọc kích
thước 10
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 20
(c) σ = 20, ảnh sau khi smoth bằng
Gaussian 220
(d) Các vùng lồi lõm dò tìm với lọc kích
thước 20
(e) σ = 60, ảnh sau khi smoth bằng
Gaussian 260
(f) Các vùng lồi lõm dò tìm với lọc kích
thước 60
Hình 3.5 Dòm tìm vùng lồi lõm ở nhiều mức khác nhau
Đặt 1σ , 2σ ,.. nσ là các mức độ được định nghĩa trước và có độ lớn tăng dần.
1σ là mức độ thấp nhất. Tại mức độ này, chúng ta có thể dò tìm các vùng lồi, lõm có
kích thước nhỏ và chi tiết. nσ là mức độ cao nhất mà tại đó chúng ta có thể dò tìm các
vùng lồi lõm lớn hơn, ít chi tiết hơn. Tại mỗi mức, trước tiên chúng ta áp dụng một
lọc Gaussian với kích thước 2iσ , sau đó chúng ta sử dụng 3 bộ lọc hiệu như hình
3.4 với kích thước S = iσ .
Trong hình 3.5, các hình vuông và hình chữ nhật màu đỏ là các vùng lồi, còn
các hình vuông và hình chữ nhật màu xanh là các vùng lõm. Trong thực tế, có nhiều
vùng lồi lõm khác cũng được dò tìm được, tuy nhiên trong hình 3.5, chúng tôi chỉ tập
trung vào các vùng lồi lõm dò tìm được trong vùng ảnh quan tâm – vùng ảnh khuôn
mặt. Trong phần 3.3, chúng tôi sẽ trình bày phương pháp cấu trúc các vùng lồi lõm
rút trích được này thành các cây cấp bậc.
Trong phần tiếp theo, chúng tôi sẽ trình bày ngắn gọn thuật toán của chúng tôi
nhằm tối ưu những hàm tính toán phức tạp sử dụng trong việc tính các giá trị lọc
trong hình 3.4.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 21
3.2.4 Tối ưu tốc độ của việc dò tìm
Trong vùng đang xét, chúng ta phải thường xuyên tính tổng độ sáng điểm ảnh
của một vùng hình chữ nhật, một số hình trong chúng có thể chồng lên nhau. Việc
này làm cho tính toán chậm đi rất nhiều do phải tính nhiều lần tổng độ sáng cho một
vùng. Để giảm độ phức tạp của tính toán này, chúng tôi sử dụng phương pháp tương
tự như ảnh tích phân (integral image) của P. Viola [5] và kỹ thuật lập trình quy hoạch
động của Đức Dương [31]. Phương pháp này được trình bày như sau:
Cho trước một ảnh mức xám ),( yxI , chúng ta định nghĩa một ảnh tích phân
),( yxS sao cho ),( yxS là tổng mức sáng của toàn bộ điểm ảnh trong hình chữ nhật
),,1,1( yxR . Chúng ta có thể dễ dàng tính được ),( yxS theo công thức truy hồi 3.7:
⎩⎨
⎧
≠∧≠+−−−−+−
=∨==
00),()1,1()1,(),1(
000
),(
yxyxIyxSyxSyxS
yx
yxS (3.7)
Hình 3.6 Ảnh tích phân
Từ ảnh ),( yxS , ta dễ dáng tính được tổng độ sáng của một hình chữ nhật bất
kỳ ),,,( btrlR theo công thức 3.8 sau:
),(),(),(),( tlSblStrSbrSSR +−−= (3.8)
S(i,j) = [1..i]x[1..j]
(i,j)
(1,1)
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 22
Hình 3.7 Tính tổng độ sáng cho hình chữ nhật R(l,t,r,b)
Phương pháp này cải tiến đáng kể tốc độ tính toán bởi vì chúng ta chỉ cần tính
một lần ảnh tích phân và sử dụng nó trong tất cả các cửa sổ hình chữ nhật con và đặc
biệt độ phức tạp tính toán không phụ thuộc vào kích thước của vùng đang xét.
3.3 Xây dựng cây cấu trúc lồi lõm
Từ các vùng lồi lõm rút trích được, chúng ta xây dựng các cây quan hệ cấp
bậc. Những vùng được rút trích ở mức cao nhất nσ sẽ trở thành những nút gốc của các
cây sẽ tạo. Những vùng rút trích được ở mức thấp nhất 1σ sẽ được chèn vào cây như
là những nút lá (xem hình 3.8)
Hình 3.8 Tạo cây cấp bậc
Công việc chính của việc tạo cây là kết nối các vùng rút trích được tại một
mức đến các vùng của mức kế tiếp. Nếu vùng R tại mức iσ bị che khuất hơn hai phần
l r
t
b
(1,1)
(W,H)
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 23
ba diện tích của nó bởi vùng R’ của mức 1+iσ , R sẽ được gán nhãn là nút con của R’.
Bằng cách này chúng ta có thể dễ dàng tạo cây cấp bậc từ các vùng đã rút trích được.
Các vùng rút trích được trong hình 3.5 được xây dựng thành cây như sau (xem hình
3.9)
Hình 3.9 Một ví dụ về cây rút trích từ khuôn mặt
Đối với mỗi nút trong cây, chúng ta cần lưu các thông tin của nút này như: loại
(lồi hay lõm), hình dạng (vuông, chữ nhật ngang, chữ nhật đứng), vị trí tương đối của
nó so với nút cha của nó (có giá trị từ 0 đến 12, xem hình 3.10), và thông tin về độ
sáng của nó.
Hình 3.10 Vị trí vùng tương đối của nút con
Trong hình 3.10 biểu diễn các vị trí tương đối của nút con trên nút cha lần lượt
có dạng vuông, chữ nhật ngang, và chữ nhật đứng. Việc xét một nút con có vị trí
1 2
4 3
1 2
4 3
5
6
7
8
1 2
4 3
9 10
12 11
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 24
tương đối như thế nào đối với nút cha khá đơn giản. Nếu tâm của nút con (tâm của
hình vuông hay hình chữ nhật) rơi vào vùng nào trong hình 3.10 thì chỉ số của vùng
đó chính là giá trị vị trí tương đối của nút con trong nút cha. Lưu ý rằng đối với các
nút gốc giá trị này sẽ là 0.
Bên cạnh đó thông tin về độ sáng cũng rất quan trọng trong các bài toán phát
hiện và nhận dang khuôn mặt về sau. Để lưu trữ thông tin này trên cây chúng tôi sử
dụng phương pháp phân tích thành phần chính (Principal Component Analysis –
PCA) để giảm số chiều của ảnh mức xám trên vùng ảnh của nút đó. Bằng cách này ta
giảm được đáng kể thông tin phải lưu trữ về độ sáng của ảnh. Thay vì phải lưu trữ
toàn bộ điểm sáng của các vùng lồi lõm (các nút), chúng ta chỉ cần lưu một vector
PCA chứa nội dung của các điểm sáng này. Cách này giúp cho giảm thông tin phải
lưu trữ, xử lý mà cũng không mất mát quá nhiều thông tin (Xem hình 3.11).
Hình 3.11 Cách tính vector đại điện độ sáng cho nút
Cụ thể ta thực hiện như sau: dùng một cửa sổ con S kích thước 9x9 quét theo
đường zic-zac trên ảnh xám của vùng lồi lõm. Các cửa cổ này có thể chồng lắp lên
nhau hai phần ba kích thước của nó. Tại mỗi điểm, ta lưu lại trung bình mức sáng của
các điểm ảnh trong cửa sổ S. Như vậy ta lưu được một vector tương ứng cho biểu
diễn mức sáng của điểm ảnh tại nút đó.
9
9
S
Các khả năng
chồng lắp cửa
sổ
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 25
Vị trí của nút gốc trên
ảnh
Nội dung của nút được
phóng ra:
1. Kiểu: lõm
2. Hình: vuông
3. Vị trí: 1
4. = (a1, a2,...,an)
Hình 3.12 Ví dụ về cây rút trích được và các thông tin trên một nút
Bên cạnh đó, chúng tôi sử dụng một số luật để tỉa bớt nhánh cho các cây. Nếu
một nút cùng kiểu (lồi hay lõm) so với nút cha của nó thì nó được xem là một nút lập.
Trong trường hợp này, nút lập sẽ được tỉa khỏi cây. Nếu nó là một nút lá, chúng ta dễ
dàng xóa nó khỏi cây. Ngược lại, nếu nó không phải là nút lá, tất cả các nút con của
nó sẽ được gán trở thành con của nút cha nó. Hình 3.5 và 3.9 cho ta một ví dụ về
trường hợp này: chúng ta có hai vùng lồi hình chữ nhật đứng ở mức σ2 và σ3. Hai
vùng này thật sự chỉ là một. Trong thực thế, do hiệu ứng của phép lọc Gaussian tại
các mức khác nhau, chúng được rút trích ra từ ảnh với các kích thước khác nhau vì
thế vùng lồi ở mức σ3 đã được xóa khỏi cây trong hình 3.9.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 26
3.4 Xây dựng hàm tính độ tương đồng giữa hai cây
Trong phần này chúng tôi xin đề xuất một cách tính độ tương đồng giữa hai
cây lồi lõm theo cách biểu diễn như phần trước. Việc xây dựng hàm tương đồng giữa
hai cây là rất cần thiết trong tất cả các xử lý liên quan đến đặc trưng này. Nó có tính
chất quyết định ảnh hưởng đến độ chính xác của phát hiện và nhận dạng khuôn mặt.
3.4.1 Độ tương đồng giữa hai nút trên cây
Để xây dựng hàm tính độ tương đồng giữa hai cây trước hết ta cần xây dựng
hàm tính độ tương đồng của hai nút trên hai cây. Với điều kiện rằng hai nút thuộc hai
cây khác nhau này cùng mức σi nào đó.
Đặt N1 và N2 là hai nút cùng cấp trên hai cây T1 và T2. Khi đó N1 và N2 có
những thuộc tính sau:
N1, N2 ∈ Node = {(t,s,p,i)} (3.9)
Trong đó:
t ∈{ridge, valley} : là loại của nút (lồi hay lõm).
s = {square, horizontal rectangle, vertical rectangle} là hình dạng của nút (vuông,
hình chữ nhật ngang, hình chữ nhật đứng).
p ∈ [0..12] : là vị trí tương đối của nút trong nút cha của nó.
i ∈ (a1,a2,...,an) : là vector chứa thông tin độ sáng của nút. Trong đó n thay đổi tùy
theo cấp của nút. Ở mức σi càng cao, kích thước của vùng lồi lõm tương ứng với nút
càng lớn, số chiều n của vector này càng cao.
Dựa trên các thuộc tính của node định nghĩa trong công thức 3.9, ta xây dựng
công thức tính độ tương đồng giữa 2 nút như sau:
).,.()1().,.().,.().,.(),( 2111121121121121 iNiNEVpNpNEsNsNEtNtNENNNS γβαγβα −−−+++=
(3.10)
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 27
Trong công thức 3.10, α1, β1, và γ1 là các thông số thực ngiệm, hàm E(x,y)
dùng để xét sự giống nhau giữa 2 thuộc tính được định nghĩa như sau:
⎩⎨
⎧
≠
==
yx
yx
yxE
0
1
),( (3.11)
Bên cạnh đó ký hiệu EV(x,y) là hàm tính độ tương đồng giữa 2 vector được
chuẩn hóa về đoạn [0,1]. Trong đó x và y là hai vector độ sáng có n chiều (a1,a2,...an).
n
ayax
yxEV
n
i
ii
255
)..(
1),( 1
2∑
=
−
−= (3.12)
Do mỗi thành phần ai trong vector độ sáng có giá trị là độ sáng (ai ∈[0,255])
nên dễ dàng chứng minh được EV(x,y) ∈[0,1]. EV(x,y) đạt giá trị lớn nhất là 1 khi hai
vector x và y trùng nhau. Và EV(x,y) đạt giá trị nhỏ nhất là 0 khi hai vector có khoảng
cách Euclid xa nhau nhất. Và từ đó ta cũng dễ dàng suy ra được giá trị của
]1,0[),( 21 ∈NNNS với mọi cặp nút N1 và N2.
3.4.2 Độ tương đồng giữa hai cây
Trên cơ sở hàm tính độ tương đồng giữa hai nút, ta xây dựng lên hàm tính độ
tương đồng giữa hai cây. Gọi T1 và T2 và hai cây đang cần tính độ tương đồng. T1 và
T2 có những thuộc tính sau:
)},...,,,,{(, 2121 ncccnrTreeTT =∈ (3.13)
Trong đó:
r : là nút gốc của cây r ∈ Node.
n : là số nhánh con của cây n ∈ N.
ci : là cây (nhánh) con thứ i của cây ci ∈ Tree và i ∈ [1..n]. ci có thể là một nút là
hoặc cũng có thể là một cây khác.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 28
Từ công thức 3.13, ta xây dựng công thức tính độ tương đồng của 2 cây như
sau:
nnTT
cTcTTS
rTrTNSTTTS
nT
i
nT
j
ji
..
).,.(
)1().,.(),(
21
.
1
.
1
21
221221
1 2∑∑
= =−+= αα (3.14)
Trong đó α2 là thông số thực nghiệm. Các thông số thực nghiệm α1, β1, và γ1
trong công thức 3.10 và α2 trong 3.14 sẽ được thảo luận chi tiết trong phần thực
nghiệm nhằm chọn thông số thực nghiệm tốt nhất. Theo công thức 3.14 ta cũng dễ
dàng nhận thấy ]1,0[),( 21 ∈TTTS với mọi cặp cây T1 và T2. Giá trị của hàm này càng
lớn, hai cây này càng giống nhau càng nhiều hơn.
Ngoài ra, trong phần thử nghiệm chúng tôi có thử nghiệm đặc trưng lồi lõm
mà không sử dụng đến thông tin độ sáng. Khi đó công thức 3.10 tính độ tương đồng
giữa hai nút được đơn giản hóa như sau:
).,.()1().,.().,.(),( 211121121121 pNpNEsNsNEtNtNENNNS βαβα −−++= (3.15)
3.4.3 Không gian cây và khoảng cách giữa hai cây
Trong một số trường hợp, hàm tính độ tương đồng giữa hai cây không đủ để
tính toán trong một số trường hợp. Để đưa về bài toán không gian, ta xây dựng một
“không gian cây” (tree-space), không gian này sẽ là cơ sở để cho các bài toán phát
hiện và nhận dạng khuôn mặt về sau.
Trong không gian cây này, mỗi cây được xem là một điểm trong không gian.
Trên cơ sở đó ta xây dựng hàm tính khoảng cách giữa hai cây như sau:
),(1, 2121 TTTSTT −= (3.16)
Dễ dàng nhận thấy, khoảng cách giữa hai cây là một giá trị thuộc đoạn [0,1].
Và khoảng cách tiến dần về bằng không khi hai cây càng giống nhau.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 29
Trên cở sở các công thức tính độ tương đồng, khoảng cách này, chúng tôi xây
dựng một mô hình thống kê để dò tìm và phát hiện khuôn mặt. Mô hình có thể dùng
cho nhận dạng khuôn mặt cũng như mở rộng cho bài toán phân loại đối tượng. Phần
mô hình này sẽ được trình bày trong chương sau. Các phần thảo luận về khả năng mở
rộng của mô hình này cho bài toán nhận dạng khuôn mặt và phân loại đối tượng sẽ
được trình bài trong chương kết luận và hướng phát triển.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 30
CHƯƠNG 4
PHÁT HIỆN KHUÔN MẶT
DỰA TRÊN ĐẶC TRƯNG LỒI LÕM
4.1 Tập mẫu học
Trong luận văn này chúng tôi thử nghiệm trên tập dữ liệu ảnh thu thập bởi
Markus Weber [32]. Đây là tập dữ liệu chụp các khuôn mặt thẳng, chụp dưới nền
phức tạp và đa dạng gồm cả trong nhà và ngoài trời. Điều kiện chiếu sáng khá đa
dạng gồm cả các ảnh chụp cùng chiều chiếu sáng và ngược sáng. Ngoài ra còn có các
ảnh chụp phức tạp do một phần của khuôn mặt bị che khuất. Ngoài ra, tập ảnh này
còn chứa cả ảnh chụp lại từ tranh họa mặt người.
(a) Ảnh chụp trong nhà
(b) Ảnh chụp ngoài trời
(c) Ảnh chụp ngược sáng (d) Ảnh chụp phức tạp do che kuất
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 31
(e) Ảnh chụp phức tạp do biểu cảm (f) Ảnh chụp từ tranh họa
Hình 4.1 Một số ảnh trong tập ảnh Weber
Trong tập ảnh này có tất cả 450 ảnh. Chúng tôi sử dụng 200 ảnh để học và 250
ảnh còn lại để kiểm thử.
4.2 Mô hình thống kê
4.2.1 Gán nhãn
Từ tập ảnh học, chúng tôi dùng phương pháp trình bày trong chương 3 để rút
trích các cây lồi lõm trên ảnh. Các cây này được gán nhãn thủ công. Mỗi cây bất kỳ
được gán nhãn là mặt (face) hay không phải khuôn mặt (non-face). Như vậy, từ một
tập ảnh học ta rút trích được hai tập cây. Tập cây biểu diễn khuôn mặt và tập cây biểu
diễn đối tượng không phải là khuôn mặt.
Hình 4.2 Mô hình gán nhãn cho tập học
Gán
nhãn
Rút trích
câyTập ảnh
học
Face Non-face
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 32
4.2.2 Thống kê
Mục đích của bước này là xấp xĩ được một cấu trúc cây khuôn mặt. Trong
bước gán nhãn, chúng tôi tiến hành rút trích cây và gán nhãn. Kết quả thu được 2036
cây thuộc lớp “khuôn mặt”. Các cây này được dùng làm dữ liệu học thống kê. Mô
hình thống kê chúng tôi sử dụng như sau:
Đặt S(Tx) là tổng khoảng cách của một cây Tx bất kỳ đến tất cả các cây còn lại
trong tập học.
∑≠∧=
=
=
xini
i
ixx TTTSTS
1
),()( (4.1)
Ta có tập học sẽ trở thành:
})),(,{( FaceSetTTSTTraining iii ∈∀= (4.2)
Trong đó FaceSet là tập các cây được gán nhãn là “khuôn mặt”. Việc học
thống kê theo mô hình của chúng tôi khá đơn giản. Trước tiên, chọn trong tập
Training ra k cây có giá trị S(T) bé nhất. k cây này sẽ là đại diện tiêu biểu cho một lớp
khuôn mặt.
Từ kết quả k cây rút trích được, tạm gọi là tập cây chuẩn, chúng ta có thể dùng
chúng để phát hiện khuôn mặt theo mô hình như sau:
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 33
Hình 4.3 Mô hìn phát hiện khuôn mặt
Trong mô hình này, trước tiên từ ảnh đầu vào ta dùng phương pháp rút trích
lồi lõm ta sẽ nhận được một danh sách các cây lồi lõm. Ứng với mỗi cây ta dựa vào
tập cây chuẩn để kiểm tra xem liệu đây có phải là cây biểu diễn “khuôn mặt” hay
không. Nếu thỏa điều kiện đánh giá nó sẽ trở thành ứng viên khuôn mặt. Trong bước
cuồi cùng, hậu xử lý, các ứng viên sẽ được kiểm tra ràng buộc. Và sau cùng là khử
trùng lắp khuôn mặt do có một số cây có một phần của nút gốc chồng lên nhau.
4.2.3 Đánh giá dùng cho phát hiện khuôn mặt
Dựa trên tập cây chuẩn, một cây bất kỳ được đánh giá có khả năng là khuôn
mặt hay không dựa trên trung bình khoảng cách của cây đang xét đến tất cả các cây
trong tập cây chuẩn.
k
Tt
tD
k
i
i∑
== 1
,
)( (4.3)
Trong đó:
)(tD : là trung bình khoảng cách của cây t đến các cây trong tập chuẩn
t: là cây đang xét
Ti: là các cây trong tập k cây chuẩn
Đánh giá cây
Ảnh
input
Tập cây
chuẩn
ứng viên
Hậu xử lý
Các vị trí
khuôn mặt
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 34
Căn cứ vào giá trị D , cây t được đánh giá là ứng viên mặt hay không dựa theo
công thức sau:
1)( δ≤⇔∈ tDateFaceCandidt (4.4)
Ngưỡng δ1 là ngưỡng thực nghiệm, ngưỡng này sẽ được lấy khoảng 0.2 đến
0.4. Ngoài cách tính trung bình khoảng cách, ta có thể đánh giá ứng viên thông qua
việc tính trung bình độ tương đồng của cây ứng viên với tập cây chuẩn.
k
TtTS
tS
k
i
i∑
== 1
),(
)( (4.5)
Trong đó:
)(tS : là trung bình độ tương đồng của cây t so với các cây trong tập chuẩn
t: là cây đang xét
Ti: là các cây trong tập k cây chuẩn
Tương tự như trường hợp trên, giá trị )(tS sẽ được dùng để đánh xem cây t có
khả năng là khuôn mặt hay không.
2)( δ≥⇔∈ tSateFaceCandidt (4.6)
Dễ thấy ngưỡng δ2 là số gần với một, có thể nói δ2≅1-δ1. Ngưỡng này sẽ được
lấy trong khoảnh từ 0.6 đến 0.8. Tuy nhiên, về bản chất hai cách này hoàn toàn giống
nhau.
4.2.4 Hậu xử lý
Các kết quả thu được cho thấy rằng có một vùng khuôn mặt được phát hiện có
một phần chồng lắp lên nhau. Có thể phát hiện ra nhiều cây ứng viên được đánh giá
là “khuôn mặt”, nhưng thật sự chúng là sự chồng lắp của nhiều cây lên một vị trí
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 35
khuôn mặt. Vì vậy, chúng ta cần một thuật toán tốt để giảm những phát hiện các ứng
viên trùng này. Trước hết chúng tôi sử dụng một đánh giá đơn giản để liên kết các
vùng trùng lấp. Nếu hai ứng viên khuôn mặt có vùng diện tích bị chồng lắp lên nhau
quá một phần ba diện tích của nó, chúng được xem là các mặt trùng và được liên kết
lại thành một vùng lớn hơn. Vùng điện tích xem xét đó chính là vùng diện tích của
nút gốc của cây ứng viên.
(a) các vùng khuôn mặt chồng lấp (b) sau khi gom vùng
Hình 4.4 Một ví dụ về giảm trùng lắp
Sau khi gom nhóm được vùng, chúng tôi thu được một hay nhiều vùng chứa
khuôn mặt. Tuy nhiên, do sai số của kích thước của cây và kích thước khuôn mặt, nên
chúng tôi luôn có được vùng khuôn mặt phát hiện được lớn hơn khuôn mặt thực tế.
Chúng tôi áp dụng tiếp kỹ thuật xác định vùng lồi lõm với mức nhỏ hơn nhằm để
phát hiện chính xác vùng. Chúng tôi chỉ áp dụng thuật toán dò tìm đặc trưng lồi lõm
trên vùng bao khuôn mặt, sau đó liên kết các vùng lồi lõm cùng loại lại với nhau.
Vùng khuôn mặt thật sự sẽ là vùng liên thông lớn nhất trong đó. Với cách như vậy,
chúng ta sẽ thu nhỏ, và xác định chính xác hơn vị trí khuôn mặt.
Hình 4.5 hậu xử lý
4.3 Cơ sở lý thuyết của mô hình
Như đã trình bày trong phần 3.4.3 ở chương 3, mỗi cây có thể được xem là
một điểm trong không gian cây, trong đó mỗi cây chứa cấu trúc lồi lõm của các đối
Miền liên
thông lớn
nhất cùng
kiểu với các
nút gốc của
cây
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 36
tượng quan tâm. Trong bài toán này ta quan tâm đến các cây biểu diễn câu trúc khuôn
mặt. Từ tập học, gồm các cây được đánh nhãn “khuôn mặt”, ta có thể biểu diễn nó
trong một không gian hữu hạn chiều, là các điểm (xem hình 4.6).
Hình 4.6 Các cây khuôn mặt trong không gian cây
Trong hình trên, các điểm tương ứng với các cây được gán nhãn “khuôn mặt”
trong tập học. Việc chọn ra k cây cho tập chuẩn có thể hiểu theo nghĩa là ta chọn k
điểm đại diện. k điểm này nằm ngay trung tâm của lớp khuôn mặt (xem hình 4.7).
Phương pháp gần giống với phương pháp k người láng giềng gần nhất nhưng có thay
đổi cho phù hợp với bài toán phân lớp này nhằm tối ưu tốc độ.
Hình 4.7 Chọn k cây chuẩn theo tiêu chí trọng tâm
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 37
Vấn đề ở đây là xác định số k hợp lý để sao cho k cây trung tâm đó đủ tổng
quát để đại diện cho cấu trúc khuôn mặt.
Sau đó, trên cơ sở tập cây mẫu này, một cây mới được so sánh và tính trung
bình khoảng cách đến tất cả các cây trong tập mẫu.
Hình 4.7 Đánh giá điểm thuộc lớp “khuôn mặt” hay không
Như vậy, xét về mặt toán học đây việc tính khoảng cách trung bình từ điểm
đang xét so với điểm chuẩn tương ứng với việc xét vị trí tương đối của nó so với cả
nhóm điểm chuẩn. Nếu điểm nằm hoàn toàn bên trong cụm, chắc chắc khoảng cách
trung bình sẽ rất nhỏ và sẽ được xếp vào lớp “khuôn mặt”. Ngược lại, nếu điểm đang
xét nằm bên ngoài cụm, khoảng cách trung bình sẽ tăng lên và khả năng được xếp
vào lớp “khuôn mặt” là rất thấp.
Mô hình thống kê này cũng phù hợp cho bài toán phân loại đối tượng cho thị
giác robot. Phù hợp với cách học thích ứng, cho các đối tượng được học trước và cho
cả đối tượng chưa biết được học tăng cường trong quá trình sống của robot.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 38
CHƯƠNG 5
THỬ NGHIỆM VÀ KẾT QUẢ
5.1 Thử nghiệm
Chương trình được cài đặt trên môi trường lập trình Microsoft Visual C++ 6.0.
Sử dụng thư viện mã nguồn mở OpenCV [33] và thư viện xử lý ảnh của Intel [34]
(Intel Image Processing Library). Máy tính sử dụng có cấu hình Petium IV 1.4 GHz,
bộ nhớ 512MB, hệ điều hành Microsoft Windows XP Professional.
Tập ảnh sử dụng là tập ảnh chụp khuôn mặt thẳng của Markus Weber [32].
Toàn bộ tập dữ liệu có tổng cộng 450 ảnh. 200 được sử dụng để huấn luyện và 250
ảnh còn lại dùng để kiểm thử.
Tập ảnh Huấn luyện Kiểm thử
450 200 250
Bảng 5.1 Phân chia ảnh trong tập ảnh
5.2 Kết quả
Chúng tôi thử nghiệm trên hai cách chọn đặc trưng lồi lõm. Cách thứ nhất
dùng đặc trưng lồi lõm không dùng kèm đặc trưng độ sáng. Và cách thứ hai, dùng
đặc trưng lồi lõm kèm theo đặc trưng độ sáng. Trong hai thử ngiệm này, hai thuật
toán hoàn toàn giống nhau. Điểm khác nhau duy nhất là hàm tính độ tương đồng giữa
hai nút. Thử nghiệm 1 sử dụng hàm tính độ tương đồng định nghĩa ở công thức 3.15.
Còn trong thử nghiệm 2 sử dụng hàm tính độ tương đồng giữa hai nút theo công thức
3.10. Các thử nghiệm dưới đây chỉ rút trích đặc trưng lồi lõm 2 cấp: σ1 = 20 và σ2 =
120.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 39
Kết quả kiểm thử được trình bày trong bảng sau:
Thử
nghiệm
Số ảnh Đúng Sai Tỷ lệ sai Độ chính
xác
Thời
gian
1 250 182 68 27.2% 72.8% 0.6s
2 250 203 47 18.8% 81.2% 0.6s
Bảng 5.2 Kết quả thử nghiệm đặc trưng 2 mức
Chúng tôi thực hiện tiếp cùng hai thử nghiệm tương tự như trên với các đặc
trưng lồi lõm với 3 mức σ1 = 20 , σ2 = 60, và σ3 = 120.
Kết quả thu được được trình bày dưới bảng sau:
Thử
nghiệm
Số ảnh Đúng Sai Tỷ lệ sai Độ chính
xác
Thời
gian
1 250 197 53 21.2% 78.8% 0.8s
2 250 224 26 10.4% 89.6% 0.8s
Bảng 5.3 Kết quả thử nghiệm đặc trưng 3 mức
Ngoài ra, chương trình còn được thử nghiệm trên tập dữ liệu không phải là
khuôn mặt, tập dữ liệu loại đối tượng [35]. Tập dữ liệu này gồm các hình ảnh nhà, xe
gắn máy, và máy bay. Mỗi loại được kiểm thử trên 112 ảnh.
Loại đối
tượng
Số ảnh Không
phát hiện
Phát hiện
khuôn mặt
Tỷ lệ
sai
Độ chính
xác
Thời
gian
Nhà 120 115 5 4.17% 95.83% 0.8s
Xe gắn
máy
112 111 1 0.9% 99.1% 0.8s
Máy bay 115 114 1 0.87% 99.13% 0.8s
Bảng 5.4 Kết quả thử nghiệm trên ảnh không chứa khuôn mặt
5.3 Nhận xét
Các kết quả cho thấy việc sử dụng đặc trưng cùng với thông tin về độ sáng sẽ
cho kết quả tốt hơn. Và việc xây dựng các cây 3 lớp sẽ tăng độ chính xác đang kể so
với việc chỉ rút trích đặc trưng cây 2 lớp. Tuy nhiên việc rút trích đặc trưng nhiều lớp
làm cho quá trình xử lý tính toán chậm chạp hơn.
Phần 5.4 sẽ giới thiệu một số kết quả tiêu biểu của thuật toán.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 40
5.4 Một số kết quả tiêu biểu
(a) Ảnh nguồn
(b) Ảnh kết quả
(c) Gaussian σ = 220
(d) Các vùng lồi lõm ở mức 20
(e) Gaussian σ = 260
(f) Các vùng lồi lõm ở mức 60
(g) Gaussian σ = 2120
(h) Các vùng lồi lõm ở mức 120
Hình 5.1 Một trường hợp đúng
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 41
(a) Ảnh nguồn
(b) Ảnh kết quả
(c) Gaussian σ = 220
(d) Các vùng lồi lõm ở mức 20
(e) Gaussian σ = 260
(f) Các vùng lồi lõm ở mức 60
(g) Gaussian σ = 2120
(h) Các vùng lồi lõm ở mức 120
Hình 5.2 Một trường hợp phát hiện sai
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 42
Hình 5.3 (a) ảnh khuôn mặt trên nền phức tạp
Hình 5.3 (b) ảnh khuôn mặt ngạc nhiên
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 43
Hình 5.3 (c) ảnh khuôn mặt có râu
Hình 5.3 (d) ảnh khuôn mặt bị quay 180o
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 44
Hình 5.3 (e) không phát hiện được khuôn mặt nào trong ảnh chụp nhà lấy từ tập
[35]
Hình 5.3 (f) không phát hiện được khuôn mặt nào trong ảnh chụp máy bay lấy từ
tập [35]
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 45
Hình 5.3 (g) không phát hiện được khuôn mặt nào trong ảnh chụp xe gắn máy lấy
từ tập [35]
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 46
CHƯƠNG 6
KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN
6.1 Kết luận
Kết quả kiểm thử trên tập dữ liệu ảnh của Weber [32] cho thấy kết quả đạt
được tương đối chấp nhận được cho bài toán phát hiện khuôn mặt. Việc áp dụng cây
cấp bậc cùng với quan hệ của các đặc trưng lồi lõm ở nhiều mức cho thấy khá phù
hợp cho việc phân tích cấu trúc đối tượng nói chung và phân tích cấu trúc khuôn mặt
nói riêng.
Qua luận văn này, chúng tôi đã đóng góp được một hướng tiếp cận mới cho
bài toán phát hiện khuôn mặt. Liên quan đến luận văn này chúng tôi đã có một bài
báo được nhận đăng tại hội nghị IEEE ICCS-RIVF06 (xin vui lòng xem phần danh
mục công trình của tác giả).
Bên cạnh đó, hứa hẹn việc mở ra một loại đặc trưng mới có thể phát triển cho
phân loại đối tượng, phát hiện đối tượng tổng quát.
Trở lại bài toán về khuôn mặt, chúng tôi cũng nhận thấy rằng việc sử dụng duy
nhất đặc trưng lồi lõm thì chưa đủ hiệu quả cho bài toán nhận dạng mặt người (face
identification). Chúng tôi đề xuất việc sử dụng thêm một số đặc trưng phụ trợ khác
như: độ sáng, quan hệ hình học, khoảng cách giữa các vùng lồi lõm cùng mức.
6.2 Hướng phát triển
Hướng tới một mô hình tổng quát và ổn định hơn, chúng tôi đang thử nghiệm
việc tìm kiếm một mô hình máy học phù hợp hơn cho cấu trúc cây.
Bên cạnh đó chúng tôi đang mở rộng tập các bộ lọc (Hình 3.4, chương 3)
thành tập nhiều lọc hơn với các dạng hình học khác nhau, với nhiều góc nghiên khác
nhau: 300, 450, 600, -300, -450, -600. Với việc học và rút trích đặc trưng tự động, và
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 47
cấu trúc hình học đa dạng hơn của các bộ lọc, chúng tôi tin rằng mô hình này có thể
mở rộng để áp dụng cho bài toán phát hiện và nhận dạng đối tượng tổng quát hơn.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 48
DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ
[1]. Tran Le Hong Du, Duong Anh Duc, Duong Nguyen Vu, “Ridge and Valley
based Face Detection”, IEEE International Conference on Computer Sciences –
Research, Innovation, Vision for the Future (RIVF’06), Ho-Chi-Minh city, Vietnam
(accepted).
[2]. Tran Le Hong Du, Duong Anh Duc, Duong Nguyen Vu, “Ridge and Valley
Features for Face Analysis”, International Conference on Computer Vision Theory
and Applications (VISAPP’06), Setúbal, Portugal, (in review).
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 49
TÀI LIỆU THAM KHẢO
[1]. Ming-Hsuan Yang, David J. Kriegman, Narendra Ahuja, “Detecting Faces in
Images: A Survey”, IEEE Transaction on Pattern Analysis and Machine
Intelligence (PAMI), Vol. 24, No 1, pp. 34-47, Jan 2002.
[2]. Stan Z. Li, Zhen Qiu Zhang, “FloatBoost Learning and Statistical Face
Detection”, IEEE Transaction on Pattern Analysis and Machine Intelligence
(PAMI), Vol. 26, No, pp. 1-12, Sep 2004.
[3]. Stan Z. Li, Juwei Lu, “Face Detection, Alignment and Recognition”, Book
Chapter 9, pp. 385-455, Emerging Topics in Computer Vision, Prentice Hall,
ISBN 0-13-101366-1, Jul 2004.
[4]. P. Viola, M. Jones, “Robust Real Time Object Detection”, Proc. IEEE ICCV
Workshop on Statistical and Computational Theories of Vision, Jul 2001.
[5]. P. Viola, M. Jones, “Rapid object detection using a boosted cascade of
simple features”, Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR’01), pp. 511-518, Dec 2001.
[6]. K. K. Sung, T. Poggio, “Example-based learning for view-based human face
detection”, IEEE Transaction on Pattern Analysis and Machine Intelligence
(PAMI), Vol. 20, No. 1, pp. 39-51, Jan 1998.
[7]. H. Rowley, S. Baluja, T. Kanade, “Neural network-based face detection”,
IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), Vol.
20, No. 1, pp. 23-38, Jan 1998.
[8]. H. Schneiderman, T. Kanade, “Probabilistic Modeling of Local Appearance
and Spatial Relationships for Object Detection”, Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR’98), pp. 45-51, 1998.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 50
[9]. A. Rajagopalan, K. Kumar, J. Karlekar, R. Manivasakan, M. Patil, U. Desai,
P. Poonacha, S. Chaudhuri, “Finding Faces in Photographs”, Proc. 6th IEEE
Conf. Computer Vision (ICCV’98), pp. 640-645, 1998.
[10]. E. Osuna, R. Freund, F. Girosi, “Training Support Vector Machines: An
Application to Face Detection”, Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR’97), pp. 130-136, 1997.
[11]. G. Yang, T. S. Huang, “Human Face Detection in Complex Background”,
Pattern Recognition, Vol. 27, No. 1, pp. 53-63, 1994.
[12]. K. C. Yow, R. Cipolla, “Feature-Based Human Face Detection”, Image and
Vision Computing, Vol. 15, No. 9, pp. 713-735, 1997.
[13]. T. K. Leung, M.C. Burl, P. Perona, “Finding Faces in Cluttered Scenes
Using Random Labeled Graph Matching”, Proc. 5th IEEE Conf. Computer
Vision (ICCV’95), pp. 637-644, 1995.
[14]. C. Kotropoulos, I. Pitas, “Rule-based Face Detection in Frontal Views”,
Proc. Int’l Conf. Acoustics, Speech and Signal Processing, Vol. 4, pp. 2637-
2540, 1997.
[15]. A. Lanitis, C. J. Taylor, T. F. Cootes, “An Automatic Face Identification
System Using Flexible Appearance Models”, Image and Vision Computing, Vol.
13, No. 5, pp. 393-401, 1995.
[16]. M. Turk, A. Pentland, “Eigenfaces for Recognition”, Journal of Cognitive
Neuroscience, Vol. 3, No. 1, pp. 71-86, 1991.
[17]. I. Craw, D. Tock, A. Bennett, “Finding Face Features”, Proc. 2nd European
Conf. Computer Vision (ECCV’92), Vol. 2, pp. 92-96, 1992.
[18]. T. Kanade, “Picture Processing Computer Complex and Recognition of
Human Faces”, PhD thesis, Kyoto Univ., 1973.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 51
[19]. James L. Crowley, Alice C. Parker, “A Representation for Shape based on
Peaks and Ridges in the Difference of Low-Pass Transform”, Technical Report-
CMU-RI-TR-83-4, Carnegie-Mellon University, May 1983.
[20]. James L. Crowley, Alice C. Parker, “A Representation for Shape based on
Peaks and Ridges in the Difference of Low-Pass Transform”, IEEE Transaction
on PAMI, pp 156-170, Vol. 6, No. 2, Mar 1984.
[21]. Hai Tran, Augustin Lux, “A method for Ridge Extraction”, 6th Asian
Conference on Computer Vision 2004 - ACCV’04, Vol. 2, Feb 2004, Korea.
[22]. Hai Tran, Augustin Lux, “Toward a ridge and peak based symbolic
representation for object recognition”, 3rd International Conference on
Computer Science – RIVF’05, pp 64-69, Feb 2005, Vietnam.
[23]. John M. Gauch, Stephen M. Pizer, “Multiresolution Analysis of Ridges and
Valleys in Grey-Scale Images”, IEEE Transaction on PAMI, pp 635-646, Vol.
15, No. 6, Jun 1993.
[24]. Antonio M. Lopez, Felipe Lumbreras, Joan Serrat, Juan J. Villanueva,
“Evaluation of Methods for Ridge and Valley Detection”, IEEE Transaction on
PAMI, pp 327-335, Vol. 21, No. 4, Apr 1999.
[25]. James Damon, “Properties of Ridges and Cores for Two-Dimensional
Images”, Journal of Mathematical Imaging and Vision, pp 163-174, Vol. 10,
No. 2, Mar 1999.
[26]. D. Eberly, R. Gardner, B. Morse, S. Pizer, C. Scharlach, “Ridges for Image
Analysis”, Journal of Mathematical Imaging and Vision, pp 353-373, Vol. 4,
No. 4, Dec 1994.
[27]. J. B. Antoine Maintz, Petra A.V.D. Elsen, Max A. Viergever, “Evaluation of
Ridge Seeking Operators for Multimodality Medical Image Matching”, IEEE
Transaction on PAMI, pp 353-365, Vol. 18, No. 4, Apr 1996.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 52
[28]. Quan Yuan, Wen Gao, Hongxun Yao, “Robust frontal face detection in
complex environment”, International Conference on Pattern Recognition 2002
– ICPR’02, pp 25-28, Aug 2002, Canada.
[29]. F. Kanters, B. Platel, L. Florack, Bart M.H. Romeny, “Content Based Image
Retrieval Using Multiscale Top Points”, Scale-space 2003, pp 33-43, LNCS
2695, Springer –Verlag 2003.
[30]. Tony Lindeberg, “Edge Detection and Ridge Detection with Automatic Scale
Selection”, International Journal of Computer Vision, pp 117-154, Vol. 30, No.
2, Nov 1998.
[31]. Duc. A. Duong, Du. LH. Tran, Duan D. Tran, “Optimizing Speed for
Adaptive Local Thresholding Algorithm Using Dynamic Programming”,
International Conference on Electronics, Information, and Communications
2004-ICEIC’04, Vol. 1, pp. 438-441, Aug 2004.
[32]. Markus Weber, “Frontal face dataset”, California Institute of Technology,
2003,
[33]. Intel Open Source Computer Vision Library-OpenCV phiên bản 4.0
[34]. Intel Image Processing Library phiên bản 2.5
[35]. “Caltech categories”, California Institute of Technology, 2005,
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 53
PHỤ LỤC
Phụ lục 1: Laplacian/Laplacian of Gaussian
Tên gọi khác: Laplacian, Laplacian of Gaussian, LoG, Lọc Marr
Laplacian là một phép đánh giá đẳng hướng của đạo hàm cấp hai trên một
ảnh. Laplacian của một ảnh làm nổi bật những vùng có thay đổi lớn về độ sáng và
vì thế nên nó thường được sử dụng để dò tìm cạnh. Laplacian rất nhạy cảm với
nhiễu nên thường được áp dụng cho các ảnh đã được làm mịn (smoothed) trước đó
bằng một số bộ lọc làm mịn như Gaussian (Gaussian smoothing filter) để làm giảm
sự nhạy cảm của nó với nhiễu. Phép toán này nhận vào là một ảnh xám và kết quả
trả ra cũng là một ảnh xám khác.
Tính chất
Laplacian L(x,y) của một ảnh có hàm biểu diễn độ sáng là I(x,y) được định
nghĩa như sau:
2
2
2
2
),(
y
I
x
IyxL ∂
∂+∂
∂=
Do ảnh đầu vào được biểu diễn như một tập các pixel rời rạc, chúng ta phải
tìm một mặt nạ rời rạc xấp xĩ với đạo hàm cấp hai trong định nghĩa của Laplacian.
Ba mặt nạ thông dụng nhất của Laplacian được trình bày trong hình dưới đây.
Hình AP.1 Ba xấp xĩ rời rạc cho lọc Laplacian.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 54
Tuy nhiên, do những mặt nạ này xấp xĩ một một đạo hàm cấp hai trên ảnh,
chúng rất nhạy cảm với nhiễu. Để giải quyết điều này, ảnh thường được làm mịn
bằng lọc Gaussian trước khi áp dụng lọc Laplacian. Bước tiền xử lý này giảm các
thành phần nhiễu tần số cao trước khi thực hiện phép lấy vi phân.
Thật vậy, do phép tính cuộn có tính kết hợp, cúng ta có thể gộp lọc làm mịn
Gaussian với lọc Laplacian trước, sau đó cuộn lọc lai này với ảnh để thu được kết
quả mong muốn. Thực hiện cách này chúng ta có hai lợi điểm:
• Bởi vì cả hai mặt nạ lọc Gaussian và Laplacian thường nhỏ hơn rất nhiều so
với kích thước ảnh, nên phương pháp này thực hiện tiết kiệm được rất nhiều
tính toán.
• Mặt nạ LoG (Laplacian of Gaussian) có thể được tính toán trước nhờ đó
những tính toán phức tạp có thể được thực thi nhanh hơn tại thời điểm run-
time.
Hàm LoG hai chiều tâm tại 0 và với lọc Gaussian độ lệnh chuẩn σ có dạng
sau:
2
22
2
2
22
4 2
11),( σσπσ
yx
eyxyxLoG
+−
⎥⎦
⎤⎢⎣
⎡ +−−=
và được biểu diễn dưới dạng sau.
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 55
Hình AP.2 Hàm LoG hai chiều. Trục x và y được đánh dấu theo độ lệch chuẩn σ.
Một mặt nạ xấp xĩ cho hàm này (với một lọc Gaussian σ = 1.4) được biểu
diễn trong hình AP.3.
Hình AP.3 Xấp xĩ rời rạc của hàm LoG với lọc Gaussian σ = 1.4
Lưu ý rằng nếu lọc Gaussian được áp dụng với σ hẹp dần, mặt nạ LoG sẽ trở
thành mặt nạ Laplacian đơn như trong hình AP.1. Điều này là do việc làm mịn với
một lọc Gaussian kích thước nhỏ (σ < 0.5 pixel) trên một lưới rời rạc là không ảnh
Phát hiện khuôn mặt dựa trên đặc trưng lồi lõm
Trần Lê Hồng Dũ Trang 56
hưởng gì. Vì vậy trên một ảnh rời rạc, Laplacian đơn có thể được xem là một
trường hợp giới hạn của LoG cho các lọc mịn Gaussian nhỏ.
Phép LoG tính đạo hàm cấp hai trên ảnh. Điều này có nghĩa là ở những chổ
ảnh có độ sáng hằng số (biến thiên độ sáng bằng 0), LoG sẽ cho giá trị 0. Trong
những vùng lân cận, LoG sẽ cho giá trị dương ở phía tối hơn và giá trị âm ở phía
sáng hơn. Điều này có nghĩa là khi áp dụng LoG trên một ảnh có nền thuần nhất,
LoG sẽ cho kết quả:
• Bằng không tại một điểm ở ngoài xa cạnh.
• Lớn hơn không ở một mặt của cạnh.
• Nhỏ hơn không ở mặt còn lại của cạnh.
• Bằng không tại một số điểm giữa nằm trên cạnh.
Các file đính kèm theo tài liệu này:
- tlhdu_masterthesis.pdf