Tài liệu Luận văn Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
------------------------------------
LUẬN VĂN THẠC SỸ KỸ THUẬT
NGÀNH: TỰ ĐỘNG HOÁ
ĐỀ TÀI:
ĐIỀU KHIỂN TRƯỢT BỘ BIẾN ĐỔI GIẢM ÁP KIỂU QUADRATIC
Học viên: PHAN THÀNH CHUNG
Người hướng dẫn khoa học: PGS.TSKH. NGUYỄN PHÙNG QUANG
THÁI NGUYÊN 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐHKT CÔNG NGHIỆP
*****
CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM
Độc lập - Tự do - Hạnh phúc
-------------------------------------
THUYẾT MINH
LUẬN VĂN THẠC SỸ KỸ THUẬT
Học viên: Phan Thành Chung
Lớp: CHTĐH-K10
Chuyên ngành: Tự động hoá
Người hướng dẫn khoa học: PGS.TSKH Nguyễn Phùng Quang
Ngày giao đề tài: 15/02/2009
Ngày hoàn thành: 30/07/2009
NGƯỜI HƯỚNG DẪN
PGS.TSKH: Nguyễn Phùng Quang
HỌC VIÊN
Phan Thành Chung
TRƯỜNG ĐHKT CÔNG NGHIỆP
KHOA ĐT SAU ĐẠI HỌC
Số hóa bởi Trung tâm Học liệu – Đại học Thái Ngu...
76 trang |
Chia sẻ: haohao | Lượt xem: 1379 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Luận văn Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
------------------------------------
LUẬN VĂN THẠC SỸ KỸ THUẬT
NGÀNH: TỰ ĐỘNG HOÁ
ĐỀ TÀI:
ĐIỀU KHIỂN TRƯỢT BỘ BIẾN ĐỔI GIẢM ÁP KIỂU QUADRATIC
Học viên: PHAN THÀNH CHUNG
Người hướng dẫn khoa học: PGS.TSKH. NGUYỄN PHÙNG QUANG
THÁI NGUYÊN 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐHKT CÔNG NGHIỆP
*****
CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM
Độc lập - Tự do - Hạnh phúc
-------------------------------------
THUYẾT MINH
LUẬN VĂN THẠC SỸ KỸ THUẬT
Học viên: Phan Thành Chung
Lớp: CHTĐH-K10
Chuyên ngành: Tự động hoá
Người hướng dẫn khoa học: PGS.TSKH Nguyễn Phùng Quang
Ngày giao đề tài: 15/02/2009
Ngày hoàn thành: 30/07/2009
NGƯỜI HƯỚNG DẪN
PGS.TSKH: Nguyễn Phùng Quang
HỌC VIÊN
Phan Thành Chung
TRƯỜNG ĐHKT CÔNG NGHIỆP
KHOA ĐT SAU ĐẠI HỌC
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
LỜI CAM ĐOAN
Tôi xin cam đoan những nghiên cứu dưới đây là của tôi , nếu sai tôi xin chịu
hoàn toàn trách nhiệm.
Người cam đoan
Phan Thành Chung
Luận văn tốt nghiệp Cao học 3
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
LỜI NÓI ĐẦU
Trong lĩnh vực kỹ thuật điện ngày nay, điện tử công suất là lĩnh vực kỹ thuật
hiện đại. Với những bước tiến nhảy vọt trong kỹ thuật chế tạo linh kiện bán dẫn, các
linh kiện điện tử công suất: điôt công suất, Tiristor, GTO, Triac, IGBT, SID, MCT . . .
ra đời và hoàn thiện có tính năng dòng điện, điện áp, tốc độ chuyển mạch ngày càng
được nâng cao làm cho kỹ thuật điện truyền thống thay đổi một cách sâu sắc. Song
song với những tiến bộ đó các chiến lược điều khiển khác nhau cũng được áp dụng để
điều khiển các bộ biến đổi theo các cấu trúc khác nhau nhằm tạo ra bộ biến đổi thông
minh, linh hoạt và có các chỉ tiêu kinh tế - kỹ thuật, năng lượng tối ưu.
Bộ biến đổi DC – DC giảm áp kiểu Quadratic (Quadratic Buck converter) có giá
trị trung bình điện áp ra phụ thuộc vào bình phương điện áp vào, thường được sử dụng
ở mạch một chiều trung gian thiết bị biến đổi điện năng công suất nhỏ, cấu trúc mạch
của bộ biến đổi giảm áp kiểu Quadratic vốn không phức tạp nhưng vấn đề điều khiển
nó nhằm đạt được hiệu suất biến đổi cao và đảm bảo ổn định luôn là mục tiêu của các
công trình nghiên cứu. Bản chất mạch của bộ biến đổi giảm áp kiểu Quadratic có các
phần tử phi tuyến do vậy chọn điều khiển trượt với bản chất là đưa ra luật điều khiển
rơle hai vị trí tác động nhanh đến đối tượng điều khiển sẽ phù hợp cho việc điều khiển
bộ biến đổi trên.
Thực hiện luận văn tốt nghiệp trong khuôn khổ chương trình đào tạo Thạc sỹ
ngành tự động hóa của trường Đại học Kỹ thuật Công nghiệp Thái Nguyên, Tôi được
giao đề tài: ’’ Điều khiển trượt bộ biến đổi DC – DC giảm áp kiểu quadratic”
Mục tiêu của đề tài luận văn là nghiên cứu điều khiển trượt cho bộ biến đổi giảm
áp kiểu Quadratic, khảo sát đánh giá tính hiệu quả của điều khiển trượt đối với bộ biến
đổi và biện pháp nhằm nâng cao chất lượng hệ thống.
Luận văn phân tích các quá trình động học đối tượng thông qua mô hình toán
học từ đó đưa ra và chứng minh tính phù hợp của các phương án điều khiển, cuối cùng
Luận văn tốt nghiệp Cao học 4
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
là tiến hành phân tích kiểm chứng, hoàn thiện trên phần mềm mô phỏng Matlab-
Simulink.
Đề tài có tính cấp thiết để tối ưu hóa chỉ tiêu kinh tế kỹ thuật cho bộ biến đổi
giảm áp. Thiết kế nguyên lý đã thực hiện trong bản luận văn hoàn toàn có thể triển khai
áp dụng chế tạo bộ biến đổi trên thực tế với những linh kiện sẵn có, thông dụng.
Luận văn được trình bày trong 4 chương:
- Chương 1: Bộ biến đổi DC – DC giảm áp kiểu Quadratic
- Chương 2: Nguyên lý điều khiển trượt
- Chương 3: Điều khiển trượt bộ biến đổi DC – DC giảm áp kiểu quadratic
- Chương 4: Mô phỏng kiểm chứng trên nền MATLAB – Simulink
Sau thời gian thực hiện, đến nay bản luận văn của tôi đã hoàn thành với kết quả
tốt. Trước thành công này tôi xin gửi lời cảm ơn chân thành tới thầy PGS.TSKH.
Nguyễn Phùng Quang, người đã trực tiếp hướng dẫn, giúp đỡ tôi hoàn thành đề tài này,
tôi cũng xin được bày tỏ lòng biết ơn tới các anh các chị trong Trung tâm Công nghệ
cao Trường Đại học Bách khoa Hà Nội cũng như gia đình, bạn bè đã tạo điều kiện giúp
đỡ tôi trong quá trình làm luận văn.
Ngày . . .tháng 08 năm 2009
Học viên
Phan Thành Chung
MỤC LỤC
Luận văn tốt nghiệp Cao học 5
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Trang
LỜI NÓI ĐẦU 3
MỤC LỤC 5
Chương 1 BỘ BIẾN ĐỔI GIẢM ÁP KIỂU QUADRATIC 7
1.1 Giới thiệu các bộ biến đổi bán dẫn 7
1.2 Phân loại các bộ biến đổi bán dẫn 9
1.3 Các bộ biến đổi DC-DC 10
1.3.1 Bộ biến đổi giảm áp (buck converter) 11
1.3.2 Bộ biến đổi tăng áp (boost converter) 14
1.3.3 Bộ biến đổi đảo áp (buck-boost converter) 16
1.3.4 Bộ biến đổi giảm áp kiểu quadratic (Quadratic buck converter) 17
1.3.4.1 Mô hình của bộ biến đổi
18
1.3.4.2 Mô hình dạng chuẩn
19
1.3.4.3 Điểm cân bằng
21
1.3.4.4 Hàm truyền tĩnh
22
Chương 2 ĐIỀU KHIỂN TRƯỢT
2.1 Giới thiệu 23
2.2 Các hệ thống cấu trúc biến 23
2.2.1 Điều khiển đối với các hệ thống điều chỉnh bằng chuyển mạch đơn 24
2.2.2 Các mặt trượt 27
2.2.3 Ký hiệu 28
2.2.4 Điều khiển tương đương và trượt động lý tưởng 29
2.2.5 Tính tiếp cận được của các mặt trượt 33
2.2.6 Các điều kiện bất biến cho các nhiễu loạn tìm được 37
Chương 3
ĐIỀU KHIỂN BỘ BIẾN ĐỔI DC-DC GIẢM ÁP
KIỂU QUADRATIC
Luận văn tốt nghiệp Cao học 6
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
3.1 Ý tưởng điều khiển 40
3.2 Điều khiển trực tiếp 42
3.3 Điều khiển gián tiếp 44
Chương 4
MÔ PHỎNG KIỂM CHỨNG TRÊN NỀN MATLAB &
SIMULINK
48
4.1 Mạch lực bộ biến đổi 49
4.2 Xây dựng bộ điều khiển 52
4.2.1 Bộ điều chỉnh dòng điện 52
4.2.2 Bộ điều chỉnh điện áp 62
4.2.2.1 Thử nghiệm các thông số hệ thống 65
4.2.2.2 Thử nghiệm tính điều chỉnh được của hệ thống 73
KẾT LUẬN 75
TÀI LIỆU THAM KHẢO 76
Luận văn tốt nghiệp Cao học 7
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Chương 1
BỘ BIẾN ĐỔI GIẢM ÁP KIỂU QUADRATIC
1.1 Giới thiệu các bộ biến đổi bán dẫn
Các bộ biến đổi bán dẫn là đối tượng nghiên cứu cơ bản của điện tử công suất.
Trong các bộ biến đổi các phần tử bán dẫn công suất được sử dụng như những khóa
bán dẫn, còn gọi là van bán dẫn, khi mở dẫn dòng thì nối tải vào nguồn, khi khóa thì
không cho dòng điện chạy qua. Khác với các phần tử có tiếp điểm, các van bán dẫn
thực hiện đóng cắt dòng điện mà không gây nên tia lửa điện,không bị mài mòn theo
thời gian.Tuy có thể đóng ngắt các dòng điện lớn nhưng các phần tử bán dẫn công suất
lại được điều khiển bởi các tín hiệu điện công suất nhỏ, tạo bởi các mạch điện tử công
suất nhỏ. Quy luật nối tải vào nguồn phụ thuộc vào các sơ đồ của bộ biến đổi và phụ
thuộc vào cách thức điều khiển các van trong bộ biến đổi. Như vậy quá trình biến đổi
năng lượng được thực hiện với hiệu suất cao vì tổn thất trong bộ biến đổi chỉ là tổn thất
trên các khóa điện tử, không đáng kể so với công suất điện cần biến đổi. Không những
đạt được hiệu suất cao mà các bộ biến đổi còn có khả năng cung cấp cho phụ tải nguồn
năng lượng với các đặc tính theo yêu cầu, đáp ứng các quá trình điều chỉnh, điều khiển
trong một thời gian ngắn nhất, với chất lượng phù hợp trong các hệ thống tự động hoặc
tự động hóa. Đây là đặc tính mà các bộ biến đổi có tiếp điểm hoặc kiểu điện từ không
thể có được.
Các mạch điện tử công suất nói chung hoạt động ở một trong hai chế độ sau:
tuyến tính (linear) và chuyển mạch (switching).
- Chế độ tuyến tính sử dụng đoạn đặc tính khuếch đại của linh kiện tích cực,
trong khi chế độ xung chỉ sử dụng linh kiện tích cực như một khóa (van) với hai trạng
thái đóng (bão hòa) và ngắt. Chế độ tuyến tính cho phép mạch có thể được điều chỉnh
Luận văn tốt nghiệp Cao học 8
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
một cách liên tục nhằm đáp ứng một yêu cầu điều khiển nào đó. Tuy nhiên, chế độ
tuyến tính thường sinh ra tổn thất công suất tương đối cao so với công suất của toàn
mạch, và dẫn đến hiệu suất của mạch không cao. Hiệu suất không cao không phải là
vấn đề được quan tâm đối với các mạch công suất nhỏ, và đặc biệt là các mạch điều
khiển có yêu cầu về chất lượng, về đáp ứng được đặt lên hàng đầu. Nhưng vấn đề hiệu
suất được đặc biệt quan tâm đối với các mạch công suất lớn, với các lý do khá hiển
nhiên. Chế độ chuyển mạch cho phép giảm khá nhiều các tổn thất công suất trên các
linh kiện tích cực, đặc biệt là các linh kiện công suất, do đó được ưa thích hơn trong
các mạch công suất lớn.
Ví dụ cụ thể để minh họa. Giả sử ta cần thực hiện một bộ biến đổi điện áp từ 12
VDC sang 5 VDC, dòng tải tối đa là 1 A. Với giải pháp tuyến tính, dùng một vi mạch
ổn áp 7805. Với dòng tải I bất kỳ, hiệu suất của mạch một cách lý tưởng sẽ là η =
Pra/Pvào = (5.I)/(12.I) = 41.7% (ta nói lý tưởng vì chúng ta coi như bản thân vi mạch
ổn áp không tiêu thụ dòng điện). Với giải pháp chuyển mạch, ta có thể dùng mạch
giảm áp có tên gọi buck converter để thực hiện việc này và có thể đạt được hiệu suất
trên 90% với mạch này một cách dễ dàng. Nhưng cần chú ý rằng chất lượng điện áp tại
ngõ ra của giải pháp tuyến tính tốt hơn so với giải pháp chuyển mạch. Do đó, điều quan
trọng ở đây là chúng ta chọn giải pháp thích hợp cho từng bài toán.
- Kỹ thuật chuyển mạch thực tế bao gồm: chuyển mạch cứng (hard-switching)
và chuyển mạch mềm (soft-switching). Với kỹ thuật chuyển mạch cứng, các khóa
(van) được yêu cầu đóng (hay ngắt) khi điện áp đặt vào (hay dòng điện chảy qua) linh
kiện đang có giá trị lớn (định mức). Linh kiện sẽ phải trải qua một giai đoạn chuyển
mạch để đi đến trạng thái đóng (hay ngắt), và giai đoạn này sẽ sinh ra tổn thất công
suất trên linh kiện tương tự như ở chế độ tuyến tính. Tổn thất công suất trong giai đoạn
này được gọi là tổn thất (tổn hao) chuyển mạch. Điều này có nghĩa là khi tần số làm
việc càng lớn (càng có nhiều lần đóng/ngắt linh kiện trong một đơn vị thời gian) thì tổn
Luận văn tốt nghiệp Cao học 9
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
thất chuyển mạch càng lớn, và đó là một trong những lý do khiến tần số làm việc của
mạch bị giới hạn. Kỹ thuật chuyển mạch mềm cho phép mở rộng giới hạn tần số của
các bộ biến đổi chuyển mạch, nhờ việc đóng/ngắt khóa (van) ở điện áp bằng 0 (ZVS:
zero-voltage-switching) và/hoặc ở dòng điện bằng 0 (ZCS: zero-current-switching).
Nhưng tại sao cần nâng cao tần số làm việc của các bộ biến đổi chuyển mạch? Việc
nâng cao tần số làm việc sẽ giúp giảm kích thước và khối lượng của các linh kiện, và
tăng mật độ công suất.
1.2 Phân loại các bộ biến đổi bán dẫn
Có nhiều cách phân loại các bộ biến đổi chuyển mạch trong điện tử công suất,
nhưng có lẽ cách thông dụng nhất là dựa vào tính chất dòng điện ngõ vào và ngõ ra. Về
nguyên tắc, chúng ta chỉ có dòng điện một chiều (DC) hay xoay chiều (AC), do vậy có
4 tổ hợp khác nhau đối với bộ đôi dòng điện ngõ vào và ngõ ra (theo quy ước thông
thường, tôi viết ngõ vào trước, sau đó đến ngõ ra): DC-DC, DC-AC, AC-DC, và AC-
AC. Bộ biến đổi AC-DC chính là bộ chỉnh lưu (rectifier) mà chúng ta đã khá quen
thuộc, còn bộ biến đổi DC-AC được gọi là bộ nghịch lưu (inverter). Hai loại còn lại
được gọi chung là bộ biến đổi (converter).
Luận văn tốt nghiệp Cao học 10
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 1.1 Minh họa cách phân loại các bộ biến đổi
Bộ biến đổi AC-AC thường được thực hiện bằng cách dùng một bộ biến đổi
AC-DC tạo nguồn cung cấp cho một bộ biến đổi DC-AC. Thời gian gần đây có một số
bộ biến đổi AC-AC thực hiện việc biến đổi giữa 2 nguồn AC một cách trực tiếp, không
có tầng liên kết DC (DC-link), và chúng được gọi là các bộ biến đổi ma trận (matrix
converter) hay các bộ biến đổi trực tiếp (direct converter). Tên gọi bộ biến đổi ma trận
xuất phát từ thực tế là bộ biến đổi sử dụng một ma trận các khóa (van) 2 chiều để kết
nối trực tiếp một pha ngõ ra bất kỳ với một pha ngõ vào bất kỳ (tất nhiên theo một quy
luật nào đó để đảm bảo yêu cầu đặt ra đối với bộ biến đổi).
1.3 Các bộ biến đổi DC-DC
Bộ biến đổi DC-DC là bộ biến đổi công suất bán dẫn, có hai cách để thực hiện
các bộ biến đổi DC-DC kiểu chuyển mạch: dùng các tụ điện chuyển mạch, và dùng các
điện cảm chuyển mạch. Giải pháp dùng điện cảm chuyển mạch có ưu thế hơn ở các
mạch công suất lớn.
Các bộ biến đổi DC-DC cổ điển dùng điện cảm chuyển mạch bao gồm: buck
(giảm áp), boost (tăng áp), và buck-boost/inverting (đảo dấu điện áp). Hình 1.1 thể hiện
sơ đồ nguyên lý của các bộ biến đổi này. Với những cách bố trí điện cảm, khóa chuyển
mạch, và diode khác nhau, các bộ biến đổi này thực hiện những mục tiêu khác nhau,
nhưng nguyên tắc hoạt động thì đều dựa trên hiện tượng duy trì dòng điện đi qua điện
cảm.
Luận văn tốt nghiệp Cao học 11
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 1.2 Các bộ biến đổi DC-DC chuyển mạch cổ điển
1.3.1 Bộ biến đổi giảm áp (buck converter)
Bộ biến đổi buck hoạt động theo nguyên tắc sau: khi khóa (van) đóng, điện áp
chênh lệch giữa ngõ vào và ngõ ra đặt lên điện cảm, làm dòng điện trong điện cảm tăng
dần theo thời gian. Khi khóa (van) ngắt, điện cảm có khuynh hướng duy trì dòng điện
qua nó sẽ tạo điện áp cảm ứng đủ để diode phân cực thuận. Điện áp đặt vào điện cảm
lúc này ngược dấu với khi khóa (van) đóng, và có độ lớn bằng điện áp ngõ ra cộng với
điện áp rơi trên diode, khiến cho dòng điện qua điện cảm giảm dần theo thời gian. Tụ
điện ngõ ra có giá trị đủ lớn để dao động điện áp tại ngõ ra nằm trong giới hạn cho
phép. Ở trạng thái xác lập, dòng điện đi qua điện cảm sẽ thay đổi tuần hoàn, với giá trị
của dòng điện ở cuối chu kỳ trước bằng với giá trị của dòng điện ở đầu chu kỳ sau. Xét
trường hợp dòng điện tải có giá trị đủ lớn để dòng điện qua điện cảm là liên tục. Vì
điện cảm không tiêu thụ năng lượng (điện cảm lý tưởng), hay công suất trung bình trên
điện cảm là bằng 0, và dòng điện trung bình của điện cảm là khác 0, điện áp rơi trung
bình trên điện cảm phải là 0. Gọi T là chu kỳ chuyển mạch (switching cycle), T1 là thời
gian đóng khóa (van), và T2 là thời gian ngắt khóa (van). Như vậy, T = T1 + T2. Giả sử
điện áp rơi trên diode, và dao động điện áp ngõ ra là khá nhỏ so với giá trị của điện áp
ngõ vào và ngõ ra. Khi đó, điện áp rơi trung bình trên điện cảm khi đóng khóa (van) là
(T1/T)×(Vin − Vout), còn điện áp rơi trung bình trên điện cảm khi ngắt khóa (van) là
−(T2/T)×Vout.
Điều kiện điện áp rơi trung bình trên điện cảm bằng 0 có thể được biểu diễn là:
Luận văn tốt nghiệp Cao học 12
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
(T1/T)×(Vin − Vout) − (T2/T)×Vout = 0
hay
(T1/T)×Vin − ((T1 + T2)/T)×Vout = 0, (T1/T)×Vin = Vout
Giá trị D = T1/T thường được gọi là chu kỳ nhiệm vụ (duty cycle). Như vậy,
Vout = Vin×D. D thay đổi từ 0 đến 1 (không bao gồm các giá trị 0 và 1), do đó 0 < Vout
< Vin.
Với các bộ biến đổi buck, vấn đề thường được đặt ra như sau: cho biết phạm vi
thay đổi của điện áp ngõ vào Vin, giá trị điện áp ngõ ra Vout, độ dao động điện áp ngõ ra
cho phép, dòng điện tải tối thiểu Iout,min, xác định giá trị của điện cảm, tụ điện, tần số
chuyển mạch và phạm vi thay đổi của chu kỳ nhiệm vụ, để đảm bảo ổn định được điện
áp ngõ ra.
Phạm vi thay đổi của điện áp ngõ vào và giá trị điện áp ngõ ra xác định phạm vi
thay đổi của chu kỳ nhiệm vụ D: Dmin = Vout/Vin,max, và Dmax = Vout/Vin,min.
Thông thường, các bộ biến đổi buck chỉ nên làm việc ở chế độ dòng điện liên
tục qua điện cảm. Tại biên của chế độ dòng điện liên tục và gián đoạn, độ thay đổi
dòng điện sẽ bằng 2 lần dòng điện tải. Như vậy, độ thay đổi dòng điện cho phép bằng 2
lần dòng điện tải tối thiểu. Điện cảm phải đủ lớn để giới hạn độ thay đổi dòng điện ở
giá trị này trong điều kiện xấu nhất, tức là khi D = Dmin (vì thời gian giảm dòng điện là
T2, với điện áp rơi không thay đổi là Vout). Một cách cụ thể, chúng ta có đẳng thức sau:
(1 − Dmin)×T×Vout = Lmin×2×Iout,min
Luận văn tốt nghiệp Cao học 13
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hai thông số cần được lựa chọn ở đây là Lmin và T. Nếu chúng ta chọn tần số
chuyển mạch nhỏ, tức là T lớn (T = 1/f, f là tần số chuyển mạch), thì Lmin cũng cần
phải lớn.
Thành phần xoay chiều của dòng điện qua điện cảm sẽ đi qua tụ điện ngõ ra.
Với dòng điện qua điện cảm có dạng tam giác, điện áp trên tụ điện ngõ ra sẽ là các
đoạn đa thức bậc hai nối với nhau (xét trong một chu kỳ chuyển mạch). Lượng điện
tích được nạp vào tụ điện khi dòng điện qua điện cảm lớn hơn dòng điện trung bình sẽ
là ΔI×T/2. Nếu biểu diễn theo điện dung và điện áp trên tụ điện thì lượng điện tích này
bằng C×ΔV. Trong đó, ΔI là biên độ của thành phần xoay chiều của dòng điện qua
điện cảm, còn ΔV là độ thay đổi điện áp trên tụ khi nạp (cũng như khi xả, xét ở trạng
thái xác lập). Như vậy, chúng ta có thể xác định giá trị của tụ điện dựa vào đẳng thức
sau:
ΔI×T/2 = C×ΔV
ΔI đã được xác định ở trên, bằng 2 lần dòng điện tải tối thiểu, và T đã được
chọn ở bước trước đó. Tùy theo giá trị độ dao động điện áp ngõ ra cho phép ΔV mà
chúng ta chọn giá trị C cho thích hợp.
1.3.2 Bộ biến đổi tăng áp (boost converter)
Bộ biến đổi boost hoạt động theo nguyên tắc sau: khi khóa (van) đóng, điện áp
ngõ vào đặt lên điện cảm, làm dòng điện trong điện cảm tăng dần theo thời gian. Khi
khóa (van) ngắt, điện cảm có khuynh hướng duy trì dòng điện qua nó sẽ tạo điện áp
cảm ứng đủ để diode phân cực thuận. Ở điều kiện làm việc bình thường, điện áp ngõ ra
có giá trị lớn hơn điện áp ngõ vào, do đó điện áp đặt vào điện cảm lúc này ngược dấu
Luận văn tốt nghiệp Cao học 14
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
với với khi khóa (van) đóng, và có độ lớn bằng chênh lệch giữa điện áp ngõ ra và điện
áp ngõ vào, cộng với điện áp rơi trên diode. Dòng điện qua điện cảm lúc này giảm dần
theo thời gian. Tụ điện ngõ ra có giá trị đủ lớn để dao động điện áp tại ngõ ra nằm
trong giới hạn cho phép.
Tương tự như trường hợp của bộ biến đổi buck, dòng điện qua điện cảm sẽ thay
đổi tuần hoàn và điện áp rơi trung bình trên điện cảm trong một chu kỳ sẽ bằng 0 nếu
dòng điện qua điện cảm là liên tục (nghĩa là dòng điện tải có giá trị đủ lớn).
Gọi T là chu kỳ chuyển mạch (switching cycle), T1 là thời gian đóng khóa
(van), và T2 là thời gian ngắt khóa (van). Như vậy, T = T1 + T2. Giả sử điện áp rơi trên
diode, và dao động điện áp ngõ ra là khá nhỏ so với giá trị của điện áp ngõ vào và ngõ
ra. Khi đó, điện áp rơi trung bình trên điện cảm khi đóng khóa (van) là (T1/T)×Vin, còn
điện áp rơi trung bình trên điện cảm khi ngắt khóa (van) là (T2/T)×(Vin − Vout).
Điều kiện điện áp rơi trung bình trên điện cảm bằng 0 có thể được biểu diễn là:
(T1/T)×Vin + (T2/T)×(Vin − Vout) = 0
hay
(T1/T + T2/T)×Vin − ( T2/T)×Vout = 0 ⇔ Vin = (T2/T)×Vout
Với cách định nghĩa chu kỳ nhiệm vụ D = T1/T, T2/T = 1 − D, ta có Vin = (1 −
D)×Vout, hay Vout = Vin/(1 − D). D thay đổi từ 0 đến 1 (không bao gồm các giá trị 0 và
1), do đó 0 < Vin < Vout.
Tương tự như với bộ biến đổi buck, một trong những bài toán thường gặp là như
sau: cho biết phạm vi thay đổi của điện áp ngõ vào Vin, giá trị điện áp ngõ ra Vout, độ
dao động điện áp ngõ ra cho phép, dòng điện tải tối thiểu Iout,min, xác định giá trị của
Luận văn tốt nghiệp Cao học 15
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
điện cảm, tụ điện, tần số chuyển mạch và phạm vi thay đổi của chu kỳ nhiệm vụ, để
đảm bảo ổn định được điện áp ngõ ra.
Phạm vi thay đổi của điện áp ngõ vào và giá trị điện áp ngõ ra xác định phạm vi
thay đổi của chu kỳ nhiệm vụ D: Dmin = 1 − Vin,max/Vout, và Dmax = 1 − Vin,min/Vout.
Lý luận tương tự như với bộ biến đổi buck, độ thay đổi dòng điện cho phép sẽ
bằng 2 lần dòng điện tải tối thiểu. Trường hợp xấu nhất ứng với độ lớn của điện áp
trung bình đặt vào điện cảm khi khóa (van) ngắt đạt giá trị lớn nhất, tức là hàm số
Vin/Vout×(Vin − Vout) đạt giá trị nhỏ nhất khi D thay đổi từ Dmin đến Dmax (chú ý là hàm
số này có giá trị âm trong khoảng thay đổi của D). Gọi giá trị của D và V in tương ứng
với giá trị nhỏ nhất đó là Dth và Vin,th (giá trị tới hạn), đẳng thức sau được dùng để chọn
giá trị chu kỳ (hay tần số) chuyển mạch và điện cảm:
(1 − Dth)×T×(Vin,th − Vout) = Lmin×2×Iout,min
Việc lựa chọn giá trị cho tụ điện ngõ ra hoàn toàn giống như đối với trường hợp
bộ biến đổi buck.
1.3.3 Bộ biến đổi đảo áp (buck-boost converter)
Bộ biến đổi buck-boost hoạt động dựa trên nguyên tắc: khi khóa (van) đóng,
điện áp ngõ vào đặt lên điện cảm, làm dòng điện trong điện cảm tăng dần theo thời
gian. Khi khóa (van) ngắt, điện cảm có khuynh hướng duy trì dòng điện qua nó sẽ tạo
điện áp cảm ứng đủ để diode phân cực thuận. Tùy vào tỷ lệ giữa thời gian đóng khóa
(van) và ngắt khóa (van) mà giá trị điện áp ra có thể nhỏ hơn, bằng, hay lớn hơn giá trị
Luận văn tốt nghiệp Cao học 16
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
điện áp vào. Trong mọi trường hợp thì dấu của điện áp ra là ngược với dấu của điện áp
vào, do đó dòng điện đi qua điện cảm sẽ giảm dần theo thời gian.
Với các giả thiết tương tự như các trường hợp trên, ở chế độ dòng điện qua điện
cảm là liên tục, điện áp rơi trung bình trên điện cảm sẽ bằng 0.
Với cách ký hiệu T = T1 + T2 như trên, điện áp rơi trung bình trên điện cảm khi
đóng khóa (van) là (T1/T)×Vin, còn điện áp rơi trung bình trên điện cảm khi ngắt khóa
(van) là − (T2/T)×Vout.
Điều kiện điện áp rơi trung bình trên điện cảm bằng 0 có thể được biểu diễn:
(T1/T)×Vin − (T2/T)×Vout = 0
Như vậy:
(T1/T)×Vin = (T2/T)×Vout ⇔ D×Vin = (1 − D)×Vout
Khi D = 0.5, Vin = Vout. Với những trường hợp khác, 0 < Vout < Vin khi 0 < D <
0.5, và 0 < Vin < Vout khi 0.5 < D < 1 (chú ý là ở đây chỉ xét về độ lớn, vì chúng ta đã
biết Vin và Vout là ngược dấu). Như vậy, bộ biến đổi này có thể tăng áp hay giảm áp, và
đó là lý do mà nó được gọi là bộ biến đổi buck-boost.
Xét cùng một loại bài toán thường gặp như những trường hợp trên, tức là: cho
biết phạm vi thay đổi của điện áp ngõ vào Vin, giá trị điện áp ngõ ra Vout, độ dao động
điện áp ngõ ra cho phép, dòng điện tải tối thiểu Iout,min, xác định giá trị của điện cảm, tụ
điện, tần số chuyển mạch và phạm vi thay đổi của chu kỳ nhiệm vụ, để đảm bảo ổn
định được điện áp ngõ ra.
Luận văn tốt nghiệp Cao học 17
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Phạm vi thay đổi của điện áp ngõ vào và giá trị điện áp ngõ ra xác định phạm vi
thay đổi của chu kỳ nhiệm vụ D: Dmin = Vout/(Vin,max + Vout), và Dmax = Vout/(Vin,min +
Vout).
Lý luận tương tự như với bộ biến đổi buck, độ thay đổi dòng điện cho phép sẽ
bằng 2 lần dòng điện tải tối thiểu. Trường hợp xấu nhất ứng với độ lớn của điện áp
trung bình đặt vào điện cảm khi khóa (van) ngắt đạt giá trị lớn nhất, tức là khi D =
Dmin. Như vậy đẳng thức dùng để chọn chu kỳ (tần số) chuyển mạch và điện cảm L
giống như của bộ biến đổi buck:
(1 − Dmin)×T×Vout = Lmin×2×Iout,min
Cách chọn tụ điện ngõ ra cho bộ biến đổi này cũng không khác gì so với những
trường hợp trên.
1.3.4 Bộ biến đổi giảm áp kiểu quadratic (Quadratic buck converter)
Bộ biến đổi giảm áp kiểu quadratic thường được sử dụng ở mạch một chiều
trung gian thiết bị biến đổi điện năng công suất nhỏ. Bộ biến đổi có tên gọi như
vậy là do tính chất bậc hai của của hàm truyền tĩnh phụ thuộc theo hằng số giá trị điều
khiển vào trung bình. Yếu tố bậc hai làm gia tăng tính hiệu chỉnh của trạng thái bền
vững cân bằng khi đầu vào tiến đến giới hạn giới hạn bão hoà. Ta tổng hợp và biểu thị
mô hình của bộ biến đổi quadratic trên hình 1.2
1.3.4.1 Mô hình của bộ biến đổi
Luận văn tốt nghiệp Cao học 18
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
1
1 1
1
1 1 2
2
2 1 2
2 2
2 2
di
L v uE
dt
dv
C i ui
dt
di
L uv v
dt
dv v
C i
dt R
(1.1)
Hình 1.3: Bộ biến đổi giảm áp kiểu quadratic đóng cắt bằng thiết bị bán dẫn
Mạch bao gồm hai điện cảm L1, L2 và hai Tụ C1, C2 và các điôt, khóa Q thực
hiện bằng tranzitor trường với 2 trạng thái đóng (0) và mở (1). Với hai trạng thái đóng
mở lý tưởng của Q, kết hợp hai trường hợp cụ thể cho mạch ở dạng khai triển:
Luận văn tốt nghiệp Cao học 19
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 1.4 Lý tưởng đóng cắt cho mạch giảm áp quadratic
1.3.4.2 Mô hình dạng chuẩn
Từ hệ phương trình vi phân mô tả mạch
1
1 1
1
1 1 2
2
2 1 2
2 2
2 2
di
L v uE
dt
dv
C i ui
dt
di
L uv v
dt
dv v
C i
dt R
(1.2)
Đặt:
1 1
1
1 1
2 1
2 1
3
1
4 2
,
/ ,
,
/
L i
x
E L C
x v E
i L
x
E C
x v E
(1.3)
Luận văn tốt nghiệp Cao học 20
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
1 1 1 1,t L C dt L C d
Hệ được viết lại thành:
1 2
2 1 3
1 3 2 4
4
2 4 3
x x u
x x ux
x ux x
x
x x
Q
(1.4)
với:
1 2 1 2 2 1 1 1/ , / , /L L C C Q R C L (1.5)
1.3.4.3 Điểm cân bằng
Tại điểm cân bằng, ở trạng thái này, đạo hàm theo thời gian của các biến trạng
thái của hệ phương trình vi phân bằng không. Với giá trị điện áp ra mong muốn Vd,
Các giá trị cân bằng của hệ phụ thuộc vào hằng số điều khiển U , Giá trị điện áp trên tụ
C1=U, Giải hệ phương trình vi phân (1.2) với điều kiện vừa nói trên ta có:
2
1 3
2 4
4
3
0
0
0
0
x u
x ux
ux x
x
x
Q
(1.6)
Giải ra ta được:
3 2 2
1 2 3 4
1 1
, , ,x U x U x U x U
Q Q
(1.7)
Luận văn tốt nghiệp Cao học 21
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Tại các điểm cân bằng này, thông số trạng thái phụ thuộc theo hằng số điện áp
ra
4x
, chúng được viết là:
3/ 2 1/ 2
1 4 2 4 3 4
1 1
( ) , ( ) ,x x x x x x
Q Q
(1.8)
1.3.4.4 Hàm truyền tĩnh
Hàm truyền tĩnh của bộ biến đổi giảm áp kiểu quadratic được thể hiện trên hình 1.5
Luận văn tốt nghiệp Cao học 22
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hàm truyền là:
2
4( )H U x U
(1.9)
Hình 1.5: Đặc tuyến hàm truyền bộ biến đổi giảm áp kiểu Quadratic
Luận văn tốt nghiệp Cao học 23
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Chương 2
ĐIỀU KHIỂN TRƯỢT
2.1 Giới thiệu
Điều khiển trượt nổi tiếng với kỹ thuật phản hồi đã được đề cập đến trong rất
nhiều bài báo và các công trình nghiên cứu của nhiều tác giả. Bản chất kỹ thuật này
điều chỉnh các hệ thống thông qua điều khiển đóng ngắt như là các thiết bị điện tử công
suất nói chung và các bộ biến đổi DC-DC nói riêng. Điều khiển trượt được nghiên cứu
cơ bản bởi nền khoa học Nga xô viết được trình bày trong các cuốn sách của
Emelyanov, Utkin, và một số tác giả khác. Điều khiển phản hồi gián đoạn được áp
dụng cho các hệ thống vật lý cơ điện tử đã được thực nghiệm và đạt kết quả tốt. Trong
chương này chúng ta nghiên cứu điều khiển trượt cho hệ thống điều chỉnh đóng ngắt
phi tuyến. Ta quy ước và giải quyết các vấn đề trên cơ sở sử dụng ngôn ngữ biểu đạt
của hình học giải tích vi phân. Chúng ta cùng xem lại các hệ thống một khoá chuyển
mạch và hệ thống nhiều khoá chuyển mạch (hệ SISO và hệ MIMO), Chúng ta nghiên
cứu tính chất nổi bật của lý thuyết cơ sở của điều khiển trượt: mặt trượt, sự tồn tại mặt
trượt, định nghĩa mặt trượt , điều khiển tương đương, trượt động lý tưởng và cuối cùng
là sự ổn định của hệ thống vòng lặp điều khiển trượt với các điều kiện nhiễu.
2.2 Các hệ thống cấu trúc biến
Hệ thống cấu trúc biến là một hệ thống trong đó mô hình trạng thái động chịu
ảnh hưởng lớn trên miền của không gian trạng thái, trên đó các phép toán của hệ được
tìm thấy một cách tường tận. Bản chất không liên tục của mô hình chính là thông số
đặc tính, và những thay đổi đột ngột gây ra hoặc do sự tác động tự ý lên các thành phần
Luận văn tốt nghiệp Cao học 24
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
của toán tử, sự kích hoạt tự động của một hay nhiều bộ chuyển mạch trong hệ thống,
hoặc do sự thay đổi các giá trị tạm thời của từng tham số hệ thống xác định.
Lớp của các hệ thống cấu trúc biến tương đối rộng đối với các nghiên cứu chi
tiết, hơn nữa lại ít được quan tâm trong lĩnh vực Điện tử Công suất (Power
Electronics). Vì lý do này, ta sẽ chỉ nghiên cứu các hệ thống cấu trúc biến được điều
khiển bởi một hoặc nhiều chuyển mạch. Vị trí của các chuyển mạch này sẽ cấu thành
nên tập các đầu vào điều khiển.
Ngoài ra, ta giới hạn thêm đối với các nhóm hệ thống mà các mô tả hoặc cấu trúc
có điểm tương đồng về số chiều với hệ kết quả cũng như về bản chất của trạng thái mô
tả trong hệ.
2.2.1 Điều khiển đối với các hệ thống điều chỉnh bằng chuyển mạch đơn
Ta xét quá trình điều khiển các hệ thống được biểu diễn bởi các mô hình
không gian trạng thái phi tuyến theo dạng:
.
x f x g x u
,
y h x
(2.1)
trong đó
,nx R
[0,1]u
,
y R
Các hàm véctơ f(x) và g(x) biểu diễn các trường véctơ trơn, nghĩa là các trường
véctơ khả vi vô hạn, được định nghĩa trên không gian tiếp tuyến với nR . Hàm đầu ra
h(x) là một hàm vô hướng trơn với biến x lấy giá trị trên trục thực R. Ta coi x như là
trạng thái của hệ. Biến u được xác định như một đầu vào điều khiển hoặc dơn giản là
lượng điều khiển. Còn biến y chính là đầu ra của hệ. Ta cũng thường coi f(x) như một
trường véctơ sai lệch và g(x) như là trường đầu vào điều khiển.
Luận văn tốt nghiệp Cao học 25
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Đặc điểm chính của hệ mà ta quan tâm là bản chất giá trị nhị phân của biến đầu
vào điều khiển. Không làm mất tính tổng quát, ta giả sử đầu vào điều khiển này lấy giá
trị trên tập rời rạc [0, 1] Chú ý rằng nếu tập các giá trị có thể nhận được của biến đầu
vào vô hướng u là tập rời rạc [W1,W2] với
iW R
, i=1,2 thì theo phép biến đổi tọa độ
khả đảo dưới đây ta có:
2
1 2
( )
( )
u W
v
W W
,
và u=W2+v(W1`+W2) sẽ tạo ra biến đầu vào điều khiển mới v là một hàm đầu
vào điều khiển giá trị nhị phân lấy giá trị trên tập [0, 1].
Ví dụ 2.1: Mạch điện dưới đây biểu diễn bộ biến đổi công suất từ một chiều sang
một chiều (DC-to-DC Power Converter), còn gọi là Bộ biến đổi Boost (Boost
Converter), được điều khiển bởi một chuyển mạch đơn.
Hình 2.1: Bộ biến đổi Boost một chiều - một chiều
chuyển mạch bằng khóa bán dẫn
Lý tưởng hóa khóa đóng mở Q ta có sơ đồ được biểu thị trên hình 2.2
Luận văn tốt nghiệp Cao học 26
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 2.2: Bộ biến đổi Boost một chiều - một chiều với chuyển mạch lý tưởng
Phương trình vi phân điều khiển mô tả mạch là:
1
di
L uv E
dt
dv
C ui v
dt R
Trong đó: i là dòng điện vào cuộn cảm, v là điện áp ra, và u là hàm vị trí chuyển
mạch thỏa mãn
[0,1]u
Biểu diễn bằng ma trận, mô tả toán học của Bộ biến đổi Boost là:
0 0
1
0
0
v
E
i id L
u L
iv vdt
RC
C
Cho:
1 2
T T
x x x i v
Luận văn tốt nghiệp Cao học 27
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Ta có:
2
0 0
1
0
0
E
E
L
f x x L
x
RC
RC
Và:
2
1
x
L
g x
x
C
2.2.2 Các mặt trượt
Theo thuộc tính của chuyển mạch đơn, hệ thống n chiều, mặt trượt, ký hiệu là S,
được biểu diễn bởi tập các véctơ trạng thái trong không gian véc tơ Rn, trong đó ràng
buộc đại số h(x) = 0 được thỏa mãn,
với h:
nR R
là một hàm đầu ra vô hướng trơn của hệ. Ta định nghĩa:
| 0nS x R h x
(2.2)
Tập S biểu diễn một đa dạng trượt n-1 chiều trên nR
Giả thiết chính là: Tồn tại một tác động điều khiển phản hồi u(x), có thể
mang bản chất gián đoạn, sao cho điều kiện h(x) = 0 được thỏa mãn cục bộ bởi
quỹ đạo trạng thái x(t). Các chuyển động của trạng thái hệ, x, trên mặt trượt S,
một cách lý tưởng sẽ tạo ra toàn bộ các thuộc tính cục bộ mong muốn cho trạng
thái của hệ thống điều khiển. Giới hạn về sự tiến triển các trạng thái đạt được do
các tác động đầu vào điều khiển hợp lý, tức là giá trị của u thích hợp
[0,1]u
.
Một trong các đặc tính căn bản trong thiết kế luật điều khiển phản hồi cho các hệ
thống điều chỉnh bởi các chuyển mạch trong thực tế là đặc tính của hàm vô hướng trơn
h(x) là một phần của vấn đề thiết kế. Việc lựa chọn hàm đầu ra h(x), và theo đó, là đa
Luận văn tốt nghiệp Cao học 28
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
dạng trượt S, phụ thuộc hoàn toàn vào mong muốn của ta đối với từng mục tiêu điều
khiển xác định trong hệ.
Ví dụ 2.2: Trong ví dụ trước về Bộ biến đổi Boost, một mặt trượt có thể
được đề xuất biểu diễn dưới dạng hàm đầu ra:
2 dh x v v x V
Với
dv V
là giá trị trung bình của điện áp cân bằng đầu ra mong muốn . Nếu ta
buộc h(x) bằng 0, dẫu chỉ là cục bộ, dọc theo quỹ đạo điều khiển của hệ thống, thì điện
áp đầu ra về lý tưởng sẽ đồng nhất với với điện áp mong muốn cũng mang tính cục
bộ, một mặt trượt khác ta cũng quan tâm đến trong trường hợp riêng, được cho bởi:
1 dh x i i x I
Với
2 /d di I V RE
biểu diễn giá trị trung bình của dòng điện đầu vào cân bằng
ứng với trung bình điện áp cân bằng đầu ra mong muốn Vd
Mặc dù 2 mặt trượt trên đều biểu diễn thuộc tính mong muốn của đầu ra, nhưng
chỉ một trong số đó có tính khả thi vì liên quan tới tính ổn định nội.
2.2.3 Ký hiệu
Cho f(x), g(x) là các trường véctơ trơn xác định cục bộ trên mặt phẳng tiếp tuyến
với Rn , đặt h(x) là một hàm vô hướng lấy giá trị trên R.
Ta định nghĩa đạo hàm có hướng của h(x) theo phương f(x) là lượng vô hướng
và ký hiệu bởi
( )
T
h
f x
x
.
Và ta định nghĩa gián tiếp Lfh(x) tương tự, ta ký hiệu Lgh(x) là đạo hàm có
hướng của h(x) theo phương g(x).
Luận văn tốt nghiệp Cao học 29
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Trong hệ tọa độ cục bộ ta có:
1 2
...
T
n
h h h h
x x x x
(2.3)
1
2
.
.
.
n
f x
f x
f x
f x
(2.4)
Và:
1
n
f i
i i
h
L h x f x
x
(2.5)
2.2.4 Điều khiển tương đương và trượt động lý tưởng
Giả thiết rằng nhờ việc chọn luật chuyển mạch
[0,1]u
hợp lý, khiến trạng thái x
của hệ tiến triển cục bộ và được giới hạn trên đa dạng trượt S. Khi điều kiện
x S
được thoả mãn, ta giả thiết là điều đó đạt được với một đối tượng điều khiển xác
định. Nói cách khác, giả sử rằng ta có thể đạt được tính bất biến của S theo các quỹ đạo
của trạng thái hệ bằng cách cho các đảo mạch đầu vào điều khiển hợp lý u lấy giá trị
trên tập [0,1], mà không cần quan tâm tới độ nhanh chậm khi các đảo mạch này được
thực hiện như yêu cầu. Không quá khó để nhận ra rằng khi các quỹ đạo trạng thái cắt
xiên với các mặc trượt, thì các đảo mạch đầu vào điều khiển cần thiết phải có tần số vô
hạn, sở dĩ như vậy là vì các chuyển mạch tần số hữu hạn có thể khiến quỹ đạo bị lệch
tạm thời ra khỏi mặt trượt. Sự tiến triển của trạng thái dọc theo mặt S diến ra sau đó
như thể nó được tạo ra bời một đầu vào điều khiển trơn , thay vì đầu vào điều khiển
chuyển mạch. Sự tương đương giữa đầu vào điều khiển chuyển mạch tần số vô hạn và
điều khiển phản hồi trơn được biết đến như là ý tưởng điều khiển tương đương.
Luận văn tốt nghiệp Cao học 30
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 2.3: Minh họa điều khiển tương đương ueq
Ta định nghĩa điều khiển tương đương như một luật điều khiển phản hồi trơn, ký
hiệu bởi ueq(x) mà duy trì cục bộ sự tiến triển của quỹ đạo trạng thái được giới hạn
một cách lý tưởng với đa dạng trơn S với trạng thái đầu của hệ x(t0)=x0 được xác định
riêng trên S, tức là khi h(x)=0.
Hàm tọa độ h(x) thỏa mãn điều kiện bất biến dưới đây:
.
0eq
h
h x f x g x u x
x
(2.6)
Nói cách khác:
0f g eqL h x L h x u x
Do vậy, điều khiển tương đương được biểu diễn dưới dạng duy nhất theo tỷ số:
f
eq
g
L h x
u x
L h x
(2.7)
Trường véctơ được điều khiển, f(x)+g(x)ueq(x) và sự tiến triển tương ứng của
quỹ đạo trạng thái của hệ trên đa dạng trơn S, được biểu diễn dưới dạng:
Luận văn tốt nghiệp Cao học 31
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
.
f
g
L h x
f x g x
L h x
x
(2.8)
Chú ý rằng với bất kỳ điều kiện đầu nào, mà không vượt ra ngoài đa dạng trơn S,
dưới tác động của ueq(x), theo cách mà hàm h(x) bằng hằng từ đạo hàm của y là đồng
nhất và cục bộ bằng 0. Giá trị hằng của y = h(x) chỉ nhận giá trị 0 khi trạng thái đầu x0
được xác định trên S. Hệ vòng lặp kín được phản hồi bằng điều khiển tương đương có
thể được biểu diễn theo một cách khác như mô tả dưới đây:
. 1
1
g
h
g x f x M x f x
L h x x
x
(2.9)
Trong đó: ma trận vuông nxn chiều M(x), là một toán tử chiếu, qua không gian tiếp
tuyến với S, dọc theo miền g(x). Toán tử M(x) sẽ chiếu bất kỳ trường véctơ trơn nào
được định nghĩa trên không gian tiếp tuyến của Rn qua không gian tiếp tuyến con lên
đa dạng S theo dạng song song với miền g(x) hoặc theo hướng của trường điều khiển
đầu vào g(x).
Thực ra, đặt v là một trường véctơ trong không gian tiếp tuyến với Rn sao cho
v
miền g(x), tức là v(x) có thể biểu diễn dưới dạng
( ) ( ). ( )v x g x x ,
với
( )x
là một
hàm vô hướng trơn. Sau đó ta có:
1
1
1
0
g
g
g
g
h
M x v x I g x g x x
L h x x
h
g x g x g x x
L h x x
g x g x L h x x
L h x
g x g x x
(2.10)
Luận văn tốt nghiệp Cao học 32
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Thêm vào đó, véctơ hàng thứ n,
/ Th x
là trực giao với ảnh qua M(x) của các
trường véctơ nằm trong không gian tiếp tuyến Rn. Điều này đủ để chỉ ra rằng bất kỳ
dạng 1 trong miền của
/ Th x
sẽ triệt tiêu tất cả các véctơ cột của M(x).
Dạng một trong miền của
/ Th x
được viết lại dưới dạng:
T
h
x
x
với
x
là
một hàm vô hướng khác 0 tùy ý. Thực chất ra:
1
1
1
0
T T T
g
g gT T
T T
h h h
x M x x g x
x x L h x x
h h
x L h x L h x
x x
h h
x
x x
(2.11)
Ảnh qua M(x) của bất kỳ trường véctơ nào trong không gian tiếp tuyến với Rn sẽ
nằm trong không gian rỗng của
/ Th x
Nói cách khác, chúng nằm trong không gian
con tiếp tuyến với đa dạng S.
Rõ ràng là:M
2
(x)=M(x) kéo theo M(x)G(x) =0.
2.2.5 Tính tiếp cận được của các mặt trượt
Cho x là một điểm đại diện trên quỹ đạo trạng thái, nằm trong một lân cận mở
của đa dạng S (lân cận này bắt buộc chứa các giao điểm với đa dạng trượt). Không làm
mất tính tổng quát, giả sử rằng tại điểm đó, hàm tọa độ mặt h(x) của đa dạng S là xác
định dương, nghĩa là h(x) > 0. ta có thể xác định được trên mặt S. Mục tiêu của ta là
đưa ra một tác động điều khiển hợp lý mà đảm bảo rằng quỹ đạo của hệ thống tới và
cắt qua đa dạng S. Đạo hàm theo thời gian h(x) tại điểm x được cho bởi:
Luận văn tốt nghiệp Cao học 33
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
f g
d h
h x f x g x u L h x L h x u
dt x
(2.12)
Nếu ta giả thiết Lgh(x)>0 trong một lân cận của S (chẳng hạn Lgh(x)> là xác
định dương, nằm “trên” và “dưới” S trong một lân cận với mặt này), tiếp đó ta cần
buộc đạo hàm theo thời gian h(x) phải xác định âm tại điểm x.
Vì có giả thiết rằng Lgh(x)>0 nên ta phải chọn một điều khiển làm triệt tiêu các
hiệu ứng gia tăng dương khi nó vượt qua đạo hàm của h. Do đó ta phải cho u = 0. Đạo
hàm theo thời gian của h(x) với đầu vào điều khiển này trùng hợp hoàn toàn với đạo
hàm theo hướng Lfh(x). Để kéo theo Lgh(x)>0 trong một lân cận mở của S, Lfh(x) cần
thiết phải xác định âm trong một lân cận của S.
Nếu bây giờ ta giả thiết điểm x nằm phía “dưới” mặt phẳng, nghĩa là h(x) < 0, thì
dễ thấy để quỹ đạo tới và cắt ngang qua đa dạng trượt S, đạo hàm thời gian của h(x)
phải xác định dương. Nói cách khác, Lfh(x)+[Lgh(x)]u>0. Từ Lg(x)>0 và Lfh(x) <0, ta
phải chọn u =1 tăng hiệu ứng gia tăng dương của Lgh(x) so với đạo hàm thời gian
h(x). Nhưng, bên cạnh đó, cần thiết các hạng tử dương là đại lượng có thể vượt qua
được các hiệu ứng gia tăng âm được biểu diễn bởi Lfh(x) theo đạo hàm thời gian.
Ta kết luận rằng, giả thiết Lfh(x) >0 trong một lân cận mở của S, điều kiện cần
cho sự tồn tại của chế độ trượt trong S là Lgh(x)> -Lfh(x)>0. Nói cách khác, chia bất
phương trình trên cho lượng xác định dương Lgh(x), cần phải thỏa mãn:
1 0
f
g
L h x
L h x
Chú ý rằng bất phương trình này phải thỏa mãn trong một lân cận mở của Rn
chứa một giao không rỗng với S. Trường hợp riêng, nếu bất phương trình này thỏa mãn
Luận văn tốt nghiệp Cao học 34
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
với
x S
thì nó cũng thỏa trong một lân cận mở của S trong Rn, kéo theo các đặc tính
trơn của trường véctơ liên quan và của hàm tọa độ mặt h(x).
Theo giả thiết rằng Lgh(x)> 0 xung quanh S, dễ thấy rằng điều kiện cần vừa đưa
ra ở trên cũng chính là điều kiện đủ.
Thực chất ra, nếu điểm đại diện được xác định phía “trên” đa dạng trượt S, bất
phương trình chỉ ra rằng Lfh(x)< 0, và nó đủ để cho u = 0 tiếp đó . ( ) 0h x trong bất cứ
lân cận mở nào của S. Quỹ đạo trạng thái do vậy tiến tới, cắt ngang đa dạng S từ bất cứ
điểm lân cận nào nằm phía trên mặt S. Nếu điểm đại diện được định phía “dưới” S, bất
phương trình thiết lập được Lf(x)+Lgh(x)>0và vì thế, việc chọn u =1 buộc điều kiện
.
( ) 0h x
với bất kỳ điểm nào trong lân cận mở của S. Điều đó nói lên rằng quỹ đạo
trạng thái đã tiến tới đa dạng S.
Chú ý rằng nếu ta có Lgh(x)0 trong bất cứ
lân cận nào của S. Sự thay đổi trong biểu thức trước với tính chất tiếp cận mặt chỉ được
chiếu với lựa chọn u cho mỗi trường hợp. Trong trường hợp này, ta chọn u = 1 khi x
nằm trên S và chọn u = 0 nếu nằm phía dưới mặt trượt.
Tuy nhiên, để tránh nhầm lẫn, ta chú ý nếu Lgh(x)<0 cục bộ, ta có thể định nghĩa
lại S như một hàm tọa độ mặt trượt –h(x) thay vì h(x), khi này tất cả các phân tích phía
trên đều hợp lệ.
Điều kiện Lgh(x)>0 đặc biệt quan trọng và nó quyết định các cơ chế chuyển
mạch nhằm đạt được một cách cục bộ lên chế độ trượt trên đa dạng trượt S. Ta coi điều
kiện này như là một điều kiện ngang của trường đầu vào điều khiển g(x) liên quan đến
đa dạng trượt S. Chú ý rằng: nếu Lgh(x)=0 trên một khoảng mở xung quanh đa dạng
trượt, hệ thống là không thể điều khiển được và lượng .
( )h x
không thể đổi dấu của nó
Luận văn tốt nghiệp Cao học 35
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
xung quanh lân cận của S. Vì thế, điều kiện ngang là một điều kiện cần cho việc tồn tại
cục bộ của một chế độ trượt.
Dựa trên thực tế lượng –Lfh(x)/Lgh(x) trùng hợp với điều khiển tương đương đã
nói đến, ta thấy rằng:
Điều kiện cần và đủ cho việc tồn tại cục bộ của một chế độ trượt trên một đa
dạng trượt S = {x |h(x) = 0} là điều khiển tương đương u thỏa mãn:
0 1equ x
,
x S
Điều kiện ngang Lgh(x)>0, hoặc tổng quát hơn,
( ) 0gL h x
chỉ ra rằng hàm tọa
độ mặt trượt h(x) được coi như một hàm đầu ra của hệ, y = h(x), thì hàm này phải thỏa
mãn bậc tương đối bằng một, xung quanh giá trị y = 0. Chú ý rằng, với y = 0 thì điểm
"không động" hoàn toàn trùng hợp với trượt động lý tưởng cho bởi:
.
f
eq
g
L h x
f x g x f x g x u x
L h x
x
(2.14)
Dưới giả thiết điều kiện ngang thỏa mãn theo: Lgh(x)>0
Trong một khoảng mở đủ rộng của mặt trượt S, luật điều khiển buộc các quỹ đạo
trạng thái tiến tới mặt trượt và có thể “cắt ngang” được mặt này, cho bởi:
1 0
0 0
if h x
u
if h x
hay
1
1
2
u sign h x
(2.15)
Luận văn tốt nghiệp Cao học 36
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 2.4 Minh họa điều khiển trượt
Một cách hiển nhiên là, bất cứ một xâm nhập ban đầu nào của quỹ đạo trạng thái
tới “hướng khác” của đa dạng trượt đều gây nên tác động điều khiển tức thời đòi hỏi
cái chuyển mạch phải thay đổi vị trí của nó đến duy nhất một giá trị phù hợp khác. Hệ
quả là, quỹ đạo bị buộc phải quay lại mặt và có thể cắt ngang nó một lần nữa kèm với
sự thay đổi tương ứng vị trí của cái chuyển mạch. kết quả của chuyển động này kết quả
nằm trong một lân cận nhỏ tùy ý của mặt trượt được đặc trưng bởi chuyển động “zig-
zag” mà tần số của nó, về mặt lý thuyết, lớn vô hạn và được gọi là chế độ trượt hoặc
chuyển động trượt. Hiện tượng đường đặc tính cắt qua mặt trượt được gọi là hiện tượng
Luận văn tốt nghiệp Cao học 37
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Chattering hay bang-bang. .
2.2.6 Các điều kiện bất biến cho các nhiễu loạn tìm được
Một trong các đặc trưng chính của các chế độ trượt, hay điều khiển chế độ trượt,
là tính bền vững của chúng đối với các đầu vào nhiễu loạn bên ngoài tác động tới
thuộc tính của hệ thống. Trong phần này, chúng ta sẽ tìm hiểu các loại điều kiện cần
phải thỏa mãn bởi các nhiễu loạn để chúng có thể tự động bị loại trừ từ các mô tả của
trượt động lý tưởng.
Xét hệ phi tuyến kèm nhiễu dưới đây:
.
f x g x u xx
Hệ được điều khiển bởi một chuyển mạch đơn, thêm đó, cho S là một mặt trượt trơn
mà trên đó ta có thể tạo ra một chế độ trượt cục bộ bất kể sự có mặt của các nhiễu loạn.
Trường nhiễu được giả thiết là một hàm trơn chưa biết của trạng thái x và các giá trị
của nó bị chặn.
Giả sử tiếp ta có thể tạo ra một chế độ trượt trên mặt trượt S bất kể sự có mặt của
trường nhiễu
( )x
. Sự tồn tại của một chế độ trượt đồng nghĩa với sự tồn tại của một
điều khiển tương đương ueq, mà lý tưởng hóa, hoặc có thể cục bộ, đảm bảo các quỹ đạo
trạng thái nằm trên đa dạng trượt S. Điều khiển tương đương này cần phải là một hàm
số của trường nhiễu chưa biết và được cho bởi:
f
eq
g
L h x L h x
u x
L h x
Động lực học trượt lý tưởng, với
x S
, sẽ đạt được là:
Luận văn tốt nghiệp Cao học 38
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
.
1 1
1 1
f
g
T T
g g
L h x L h x
f x g x x
L h x
h h
g x f x g x x
L h x x L h x x
x
Toán tử chiếu M(x) dọc theo không gian tiếp tuyến với S, dọc theo miền của
g(x), cũng thực hiện được đối với phép cộng hai trường véctơ
( ) ( )f x x
, trong quá
trình tạo ra chế độ trượt cục bộ trên S.
Rõ ràng là, trượt động lý tưởng là hoàn toàn độc lập với ảnh hưởng của véctơ
nhiễu loạn
( )x
, nếu và chỉ nếu trường véctơ
( )x
nằm trong không gian rỗng của
M(x), nghĩa là:
1
1 0
T
g
h
g x x
L h x x
Hay nói cách khác, các chuyển động trượt là bất biến với ảnh hưởng của nhiễu
loạn nếu và chỉ nếu trường véctơ nằm trong miền của g(x), tức là tồn tại một hàm vô
hướng khác 0 sao cho:
x x g x
Trường nhiễu loạn
( )x
do đó được sóng hàng (aligned) với trường véctơ điều
khiển g(x). Các nhiễu loạn như vậy mang tên các nhiễu loạn tìm được và điều kiện:
span g
được biết đến như là điều kiện tìm được nhiễu loạn.
Luận văn tốt nghiệp Cao học 39
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Luận văn tốt nghiệp Cao học 40
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Chương 3
ĐIỀU KHIỂN BỘ BIẾN ĐỔI DC-DC GIẢM ÁP
KIỂU QUADRATIC
3.1 Ý tưởng điều khiển
Mô hình bộ biến đổi giảm áp kiểu quadratic đã được làm rõ trong chương
1, ta thấy rằng cấu tạo bộ biến đổi hết sức đơn giản tuy nhiên việc điều khiển
khóa chuyển mạch u để đạt được điện áp ra đạt yêu cầu là hết sức khó khăn do
tính phi tuyến của các phần tử trong mạch. Mặc dù vậy với những gợi mở của lý
thuyết điều khiển phi tuyến, cụ thể là điều khiển trượt mang lại cho ta hướng
điều khiển bộ biến đổi trên.
Với bộ biến đổi trên, hệ phương trình vi phân mô tả hệ thống là:
1
2
2
1 3
3
1 2 4
4 4
2 3
dx
x u
d
dx
x ux
d
dx
ux x
d
dx x
x
d Q
(3.1)
Với
1 2 1 2 2 1 1 1/ , / , /L L C C Q R C L và 1 1 1 1,t L dt L C d
Luận văn tốt nghiệp Cao học 41
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
H3.1 Bộ biến đổi giảm áp kiểu quadratic
Tại điểm cân bằng của bộ biến đổi, thông số của điện áp ra mong muốn
4 dx V
, và ta tính toán được:
3/ 2
1
2
3
( )d
d
d
V
x
Q
x Vd
V
x
Q
U V
(3.2)
Theo các ký hiệu và quy ước của (2.1) các trường véc tơ của hệ thống là:
2
1
3
4
21
1
4
3
2
1
1
( ) ( ) 1
1
( ) 0
x
x
x
xf x g x
x
x
x
Q
Ta có thể đưa ra các mặt trượt:
Luận văn tốt nghiệp Cao học 42
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- Theo cách trực tiếp
44 4( ) dh x x x x V
- Theo cách gián tiếp:
22( )h x x x
,
33( )h x x x
hoặc
11( )h x x x
Bước tiếp theo là xem xét tính ổn định nội của hệ thống dựa trên lý thuyết
về sự ổn định của Lyapuvov hoặc các phương pháp xét ổn định khác.
Sau đây ta đi xây dựng các luật điều khiển u cho hệ thống theo 2 cách:
3.2 Điều khiển trực tiếp
Mục tiêu của việc điều khiển là điện áp đầu ra của bộ biến đổi đạt giá trị
mong muốn tức là điều khiển đối tượng để điện áp đầu ra x4 đạt giá trị cân bằng
mong muốn
4 dx V
.
Do đó sai lệch:
44 4( ) dh x x x x V
, từ (3.1) ta có:
.
4
4 3
2
1
( )
x
x x
Q
Cho hàm tọa độ trượt h(x) tiến tới gốc tọa độ có nghĩa là điện áp ra trùng
với điện áp ra cân bằng mong muốn.
Đạo hàm hướng cho h(x) theo hàm f(x), g(x) ta có:
4
3
1 2
1
1
( )
0
n
f T
i
n
g T
i
xh
L h x f x x
x Q
h
L h x g x
x
(3.3)
Luận văn tốt nghiệp Cao học 43
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Từ những kết luận ở phần trước, ta đưa thấy rằng hàm tọa độ mặt trượt
phải có mối liên hệ bằng hoặc lớn hơn mặt trượt thực tế, vì vậy ta phải đề nghị
hàm tọa độ mặt trượt tổng quát theo dạng:
.
4 44 4
.
4
44 4 4 3 4
2
( ) ( ) ( ( )) ( ) ' ( )
1
( ) ' ( ) ( ) ( ) ( )d d d d
h x h x h x x x x x
x
x V x V x x V x x V
Q
Trong đó
là hằng số xác định dương, và h(x) có mối liên hệ:
3
2
1 22 2 1 2
1
1
1 1 1
0 0 ) 01
0
n
g T
i
x
h
L h x g x x
xx
(3.4)
Nếu h(x) =0 biến động tương ứng là x4 có đường đặc tính hội tụ theo quy
luật mà mũ đến điểm cân bằng mong muốn x4=Vd. Ta đánh giá mức độ tương
ứng điểm "0 động" với trạng thái ổn định của hệ thống.
Điều khiển đương lượng với trượt động lý tưởng theo (2.7), ta có:
f
eq
g
L h x
u x
L h x
thay vào ta có
2
d
eq
V
u
x
, từ phương trình cuối trong hệ vi phân
mô tả mạch và theo đáp ứng của x3 khi giá trị này tiến đến 3x
33
dVx x
Q
do đó ta có:
Luận văn tốt nghiệp Cao học 44
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
.
1 2
2
.
2 31
2
d
d
V
x x
x
V
x x x
x
(3.5)
Đặc tính "0 động" quanh điểm cân bằng:
3/ 2
1 2
( )
,d d
V
x x V
Q
Mô tả theo số gia các biến:
3/ 2
21 1 2
( )
,d d
V
x x x x V
Q
Đạo hàm ta có:
. .
1 22 1 22 ,
dVx x x x x
Q
Với các thông số trên ta có phương trình cho mặt trượt:
2 2 0
Vd
S S
Q
Dễ dàng nhận thấy rằng có ít nhất một nghiệm nằm phía bên phải mặt
phẳng phức, do đó hàm h(x) không tiến tới gốc tọa độ, hàm tọa độ trượt không
ổn định, trạng thái của hệ luôn tiến triển mà không có cực tiểu pha.
3.3 Điều khiển gián tiếp
Thay đổi đổi đối tượng hàm trượt, điều khiển điện áp ra bằng giá trị điện
áp ra cân bằng mong muốn theo giá trị dòng trên cuộn cảm L1, với biến x1, mặt
trượt được xác định như sau:
Luận văn tốt nghiệp Cao học 45
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
3/ 2
11 1
( )
( ) d
V
h x x x x
Q
Các đạo hàm hướng:
2
1
1
1
n
f T
i
n
g T
i
h
L h x f x x
x
h
L h x g x
x
Ta có:
2
f
eq
g
L h x
u x x
L h x
Với điều kiện 0<x2<1
Trong chế độ trượt động lý tưởng tương ứng : 3/ 2
11
( )dVx x
Q
1 1x x
ta có: .
2 1 2 3
.
2
31 2 4
.
4
42 3
x x x x
x x x
x
x x
Q
(3.6)
Điểm cân bằng của trượt động lý tưởng:
2
3
4
d
d
d
x V
V
x
Q
x V
(3.7)
Để nghiên cứu tính ổn định của hệ thống, ta xét hàm Lyapunov
Luận văn tốt nghiệp Cao học 46
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
2 2 2
2 3 42 3 4 2 1 3 2 4
2 2 32 3
0
1
( , , )
2
V x x x x x x x x x
x x x x x d
(3.8)
với
là một hằng số dương, với giả thiết rằng nó đủ rộng để hàm V là xác
định dương và
2 0,1x U
. Đạo hàm V theo thời gian thay nghiệm của hệ
phương trình vi phân sau khi giản ước phần thừa đại số:
. 2 2
4 3 22 3 4 4 2
1
( , , ) 0V x x x x x x x x
Q
Bất phương trình trên xuất phát từ thực tế là: cả Q và
3x
là các số xác định
dương. Theo lý thuyết của LaSalle thì đường đặc tính
44x x
và
22x x
buộc
mối liên hệ .
0V
không thể không thỏa mãn các đặc tính cân bằng hệ thức (3.5).
vì hệ “0 động” tiện cận ổn định với các giá trị cân bằng. Từ hệ phương trình mô
tả hệ trượt động lý tưởng („0 động‟) (3.6), theo phương trình thứ 3 khi cân bằng
ta có:
4
3
x
x
Q
đúng tại giá trị cân bằng là thực. Từ phương trình thứ 2 của (3.6)
ta có:
2
42x x
suy ra
4 22x x x
Cuối cùng từ phương trình đầu tiên trong (3.6) 3/ 2
4
2 3 1
( )x
x x x
Q
vì
vậy: đường đặc tuyến duy nhất mà .
2 3 4( , , ) 0V x x x
là hàm được biểu thị bởi chính
điểm cân bằng của nó. Tương tự, vì .
2 3 4( , , ) 0V x x x
bên ngoài các điểm cân bằng
nên V được giới hạn và đặc biệt là số lượng cần và đủ được tìm thấy ở hàm biểu
thị cho V được giới hạn. Do đó, tồn tại hằng số
0
giới hạn điểm biểu thị này.
Luận văn tốt nghiệp Cao học 47
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hiển nhiên là, dòng điện trong cuộn cảm x1 đã trở lại giá trị trung bình, tác
động đến đầu ra hệ thống, là một pha đầu ra cực tiểu. Vì vậy ta đạt được sự điều
chỉnh gián tiếp của bộ biến đổi điện áp trung bình đầu ra x4 theo giá trị mong
muốn
4 dx v
. Điều này được thực hiện chủ yếu bằng cách điều chỉnh dòng qua
cuộn cảm x1 về phía giá trị cân bằng trung bình tương ứng 3 / 2
1
( )dvx
Q
.
Sự ổn định tiệm cận của “0 động” liên qua tới x1 (đã được chứng minh ở
trên) quyết định đến ổn định nội của hệ thống điều khiển. Để đạt được mục tiêu
là ổn định ta đề xuất điều khiển trượt thỏa mãn các điều kiện ổn định. Theo lý
luận trên, một mặt trượt có thể tiếp cận, sử dụng là
11( )h x x x
điều này tương
ứng với luật đóng mở:
( ) 0
( ) 0
khi h x
u
khi h x
Tức là:
11
11
0
0
khi x x
u
khi x x
(3.9)
Ta có thể thiết lập hàm điều khiển u như sau:
1 1
1
1
2
u sign x x
(3.10)
Luận văn tốt nghiệp Cao học 48
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Chương 4
MÔ PHỎNG KIỂM CHỨNG TRÊN NỀN MATLAB & SIMULINK
Ngày nay, cùng với sự phát triển mạnh mẽ của khoa học máy tính, phương pháp
mô phỏng ngày càng chứng tỏ ưu thế của nó. Trong công tác phục vụ nghiên cứu, khảo
sát, phân tích và thiết kế hệ thống của các nhận định cũng như các kết quả khoa học
trong nhiều lĩnh vực mà không cần hệ thống thực, phương pháp mô phỏng đã đóng góp
một vai trò to lớn, nó cho phép giảm chi phí, hạn chế rủi ro, tăng cường các ưu điểm
của sản phẩm nghiên cứu để từ đó chúng ta có thể đánh giá, rút ngắn thời gian và hạ
giá thành thử nghiệm. Đối với lĩnh vực điều khiển các hệ thống thì vai trò của mô
phỏng càng đóng vai trò quan trọng bởi vì điều khiển chính là quá trình thu nhận thông
tin từ hệ thống, nhận dạng hệ thống theo một mô hình nào đó và đưa ra quyết định điều
khiển thích hợp.
Phần mềm mô phỏng Matlab & Simulink của hãng phần mềm
MathWorks là một công cụ mô phỏng mạnh với giao diện, khả năng lập trình linh hoạt,
cùng với các công cụ có sẵn để phục vụ mô phỏng cho công việc nghiên cứu cho các
ngành kỹ thuật như : Điện, điện tử, điều khiển tự động, cơ khí, thủy lực…Trong đó
Simulink là công cụ dùng để mô phỏng và phân tích hệ thống động học hệ thống được
tích hợp sẵn trong chương trình Matlab/ Simulink cho phép chúng ta mô phỏng hệ
thống điều khiển trên cả miền thời gian liên tục và gián đoạn. Các thư viện sẵn có trong
Simulink bao gồm các khâu cơ bản trong ngành kỹ thuật điều khiển tự động đáp ứng
đầy đủ yêu cầu mô phỏng, phân tích cũng như tính mở cho người sử dụng nếu người sử
dụng muốn định nghĩa thêm một khâu mới. Ngoài ra Simulink còn tương thích với các
chương trình được lập trình trên Matlab là M-file. Điều này làm cho quá trình mô
phỏng thêm linh hoạt.
Luận văn tốt nghiệp Cao học 49
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
4.1 Mạch lực bộ biến đổi
Thiết kế bộ điều khiển cho bộ biến đổi DC-DC giảm áp kiểu quadratic với các thông số
bộ biến đổi
1 1 2 2600 , 10 , 600 , 10 , E=100V; R=40L H C F L H C F
Hình 4.1 Sơ đồ bộ biến đổi giảm áp kiểu quadratic
Mô tả toán học bộ biến đổi:
1
1 1
1
1 1 2
2
2 1 2
2 2
2 2
di
L v uE
dt
dv
C i ui
dt
di
L uv v
dt
dv v
C i
dt R
Mô hình hóa mạch động lực bộ biến đổi trên Matlab-simulink:
Luận văn tốt nghiệp Cao học 50
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.2 Bộ biến đổi giảm áp kiểu quadratic mô hình hóa trên Matlab-Simulink
Thu gọn các phần tử trong subsystem:
- Đầu vào của khối là tín hiệu điều khiển u và giá trị điện trở tải R
- Đầu ra là các tín hiệu dòng điện, điện áp
Các thông số được thiết lập thông qua giao diện đặt bên ngoài
Luận văn tốt nghiệp Cao học 51
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.3 Mô hình bộ biến đổi trong khối Subsystem và cửa sổ nhập thông số
mạch động lực bộ biến đổi
4.2 Xây dựng bộ điều khiển
Luận văn tốt nghiệp Cao học 52
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
4.2.1 Bộ điều chỉnh dòng điện
Sử dụng bộ điều khiển trượt với mặt trượt _
1 1( )S h x i i
, luật điều khiển
_
1 1
_
1 1
1 0
0 0
khi i i
u
khi i i
1 1
1
[(1 ( )]
2
u sign i i
Trong đó i1 là giá trị dòng điện thực trên cuộn cảm, _1i là giá trị dòng điện cân
bằng theo tính toán. Tuy nhiên khi tiến hành chạy mô phỏng ta cũng cần đặt lại ngưỡng
tác động cho u
_
1 1
_
1 1
1 0
0 0 -
khi i i
u
khi i i
Trong đó
là giá trị tác động theo ngưỡng nhạy của “rơ le”, về lý thuyết
càng nhỏ càng tốt, hiện tượng chattering sẽ giảm nhưng tần số đóng mở phải tăng lên,
mặt khác tần số đóng mở làm ảnh hưởng đến tốc độ tính toán khi mô phỏng và tần số
đó cũng bị giới hạn bởi các thiết bị chuyển mạch công suất trong thực tế. Do vậy ta lựa
chọn
ở mức hợp lý trên phần tử Relay1
Luận văn tốt nghiệp Cao học 53
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.4 Điều chỉnh ngưỡng tác động”Rơ le”
Ta thực hiện luật điều khiển cho u như sau:
1 1
1
[(1 ( )]
2
u sign i i
Luận văn tốt nghiệp Cao học 54
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.5 Luật điều khiển trượt xây dựng trên Matlab-Simulink
Ghép lại với mạch lực bộ biến đổi ta có sơ đồ mô phỏng:
Hình 4.6 Điều khiển trượt cho bộ biến đổi giảm áp kiểu quadratic
Theo cách tính toán đã trình bày ở chương 2, khi giá trị điện áp ra
_
2 25v V
,mạch đạt tới trạng thái cân bằng thì giá trị dòng cân bằng trên các cuộn cảm
_ _
1 2
0.3125 ; 0.625i A i A
và điện áp trên tụ C2 là _1 50v V ta chạy chương trình cho kết
quả mô phỏng thể hiện trên các giản đồ sau:
Luận văn tốt nghiệp Cao học 55
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.7 Dòng điện qua cuộn cảm L1
Dòng điện i1 nhanh chóng tiến đến giá trị cân bằng đặt
1
0.3125i A
và trượt
qua giá trị dòng điện cân bằng này, quan sát trên khoảng thời gian nhỏ để thấy rõ hiện
tượng “chattering” của i1
Luận văn tốt nghiệp Cao học 56
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.8: Hiện tượng “Chattering” của dòng điện qua L1
Tín hiệu điều khiển u là một chuỗi xung được tạo ra từ bộ điều khiển trượt có
mối liên hệ với mặt trượt _
1 1( )h x i i
và
1 1
1
[(1 ( )]
2
u sign i i
, trong thực tế mô phỏng
mối liên hệ đó được thể hiện rõ trong giản đồ trên hình 4.9. Khi bắt đầu, dòng điện i1
bằng không, do _
1 1( )h x i i
>0 và tín hiệu điều khiển u =1, khóa FET mở dẫn dòng
qua cuộn cảm L1 vào bộ biến đổi, dòng điện qua L1 tăng lên một cách mạnh mẽ trong
khoảng thời gian ngắn, đến khi _
11i i
thì _
1 1( )h x i i
<0 do đó u=0 làm khóa FET khóa
lại, dòng điện qua L 1 lúc này chỉ còn là dòng điện do năng lượng tích lũy trên điện cảm
gây ra và giảm dần cho đến khi nhỏ hơn giá trị cân bằng đặt thì _
1 1( )h x i i
>0 và u=1,
Luận văn tốt nghiệp Cao học 57
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
khóa FET lại được mở. Quá trình trên lại lặp lại tạo nên hiện trượng trượt của dòng
điện thực qua giá trị dòng điện cân bằng qua cuộn cảm L1.
Hình 4.9: Mối liên hệ giữa hiện tượng trượt và tín hiệu điều khiển u
Luận văn tốt nghiệp Cao học 58
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Khi thử nghiệm tăng ngưỡng nhạy tác động của phần tử rơ le của bộ điều khiển
làm cho biên độ trượt tăng lên
a,
0.02
b,
0.2
Hình 4.10: Biên độ trượt của dòng điện i1 phụ thuộc và ngưỡng đặt cho rơ le
Hình 4.11: Tín hiệu điều khiển u cho bộ biến đổi
Luận văn tốt nghiệp Cao học 59
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.12: Dòng điện qua cuộn cảm L2
Trên hình 4.11 ta thấy rằng dòng điện qua cuộn cảm L2 cũng bị ảnh hưởng hiện
tượng chattering, Tuy nhiên dòng này cũng nhanh chóng đạt được và bám quanh giá trị
cân bằng theo tính toán theo yêu cầu.
Luận văn tốt nghiệp Cao học 60
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.13: Điện áp trên tụ C1
Điện áp trên C1 được san bằng nên không bị ảnh hưởng nhiều của hiện tượng
chattering, nó trở nên bằng phẳng. Đường đặc tính điện áp thể hiện rõ ràng sự bám sát
của điện áp thực tế mô phỏng với điện áp cân bằng đặt. Điện áp trên tụ C2 xuất phát từ
0V, tăng lên và đạt giá trị cân bằng 50V sau khoảng thời gian 0.003s và giá trị này
được giữ nguyên ổn định tại đó.
Luận văn tốt nghiệp Cao học 61
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.14: Điện áp ra trên c2
Tương tự, điện áp ra trên tụ C2 được biểu thị bằng đường đặc tính trên hình
4.12 với quá trình quá độ rất nhỏ t < 0.005s, và bám sát giá trị cân bằng theo yêu cầu.
Từ đây ta có thể kết luận rằng bộ điều khiển trượt đã đạt yêu cầu chất lượng động và
tĩnh, khi thay đổi các giá trị dòng đặt i1* khác nhau ta đều nhận được dòng i1 bám sát
theo giá trị dòng yêu cầu, đạt được các chỉ tiêu chất lượng hệ thống. Tuy nhiên, với bộ
biến đổi điện áp nói chung và bộ biến đổi giảm áp kiểu quadratic nói riêng thì việc điều
chỉnh điện áp ra thông qua việc điều chỉnh dòng điện trên các cuộn cảm là hết sức bất
tiện, không phù hợp với nguyên tắc điều khiển. Do vậy, hệ thống cần phải có bộ điều
chỉnh thỏa mãn: khi cần điện áp ra Vra đạt giá trị mong muốn thì chỉ cần thay đổi điện
Luận văn tốt nghiệp Cao học 62
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
áp đặt và điện áp ra sẽ bám theo giá trị điện áp đặt này, đồng thời các quá trình quá độ
cũng phải đạt các chỉ tiêu chất lượng.
4.2.2 Bộ điều chỉnh điện áp
Bộ điều chỉnh điện áp sử dụng mạch vòng phản hồi điện áp, sử dụng bộ điều
chỉnh PID tuyến tính, đầu vào bộ điều chỉnh là giá trị sai lệch điện áp ra và điện áp đặt
e = V1-V1*, đầu ra là tín hiệu i1*. Như vậy hệ thống lúc này có hai mạch vòng phản
hồi:
- Vòng trong là phản hồi dòng điện có tác động rất nhanh, bộ điều khiển
là điều khiển trượt.
- Vòng ngoài: phản hồi điện áp đặt có tác động chậm hơn phản hồi dòng
điện, sử dụng bộ điều khiển PID. Khi điện áp ra Vra đạt giá trị mong
muốn thì e = Vra – V*=0, khi đó dòng điện mong muốn trên cuộn cảm
L1 đạt giá trị cân bằng i1*
Hình 4.15: Sơ đồ khối hệ thống
Tổng hợp hệ thống , ta xây dựng sơ đồ cấu trúc trên Simulink như sau:
Luận văn tốt nghiệp Cao học 63
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
H
ìn
h
4
.1
6
:
T
ổ
n
g
h
ợ
p
b
ộ
b
iế
n
đ
ổ
i
t
rê
n
S
im
u
li
n
k
Luận văn tốt nghiệp Cao học 64
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.17: Bộ điều chỉnh PID và cửa sổ nhập dữ liệu
Luận văn tốt nghiệp Cao học 65
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Bộ điều khiển PID (Proportional–Integral–Derivative controller bộ điều khiển
tỷ lệ tích phân vi phân) phải có các thông số được lựa chọn thỏa mãn các yêu cầu động:
- Lượng quá điều chỉnh nhỏ
- Thời gian quá độ nhỏ
- Số lần dao động nhỏ
Bộ thông số: hệ số tỷ lệ, hệ số tích phân, hệ số vi phân chọn được là bộ thông số
tối ưu làm cho đặc tính hệ thống thỏa mãn các yêu cầu động trên. Với bộ điều chỉnh
PID, các thông số được của bộ điều chinh được chọn theo phương pháp thực
nghiệm thông qua việc thử nghiệm trên mô hình mô phỏng và điều chỉnh theo sự
đánh giá tính chất đặc tính hệ thống.
4.2.2.1 Thử nghiệm các thông số hệ thống
Để đánh giá chi tiết hơn về tác dụng của bộ điều chỉnh và chất lượng động
của hệ thống, trong quá trình mô phỏng ta cho hệ thống làm việc với sự biến
động của tải:
Thời gian (s) 0 - 0.015 0.015 - 0.03 0.03 - 0.045
Tải 90%P P 110%P
R (ohm) 45 40 36
Các kết quả mô phỏng:
Trên hình 4.18 là đáp ứng dòng điện i1* khi mô phỏng với sự thay đổi tải.
Trong đoạn 0-0.015s, hệ thống làm việc non tải, dòng điện i1* khởi động và đạt
đến trạng thái xác lập. Tại t=0.015s bắt đầu tăng tải cho mạch là việc với chế độ
tải định mức, dòng điện tăng lên và xác lập sau một khoảng thời gian quá độ
nhỏ. Khi T=0.03s, hệ thống làm việc quá tải
Luận văn tốt nghiệp Cao học 66
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.18: Đáp ứng dòng điện i1* của hệ thống
Hình 4.19: Dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID
Luận văn tốt nghiệp Cao học 67
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Do tác dụng của bộ điều khiển dòng điện (bộ điều khiển trượt), dòng điện qua
cuộn cảm i1 bám rất sát dòng i1*, kết quả là dòng i1 chạt theo i1* với hiện tượng
chattering đặc trưng của điều khiển trượt được thể hiện trên hình 4.19, 4.20
Hình 4.20: “Chattering” của dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID
Với khoảng thời gian nhỏ 0-0.0003s ta cũng quan sát được tín hiệu điều khiển u
và mối liên hệ giữa i1, i1* và u
Luận văn tốt nghiệp Cao học 68
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.21: Mối liên hệ giữa i1* , i1 và tín hiệu điều khiển u khi có bộ điều chỉnh PID
Hình 4.21: Tín hiệu điều khiển u khi có bộ điều chỉnh PID
Luận văn tốt nghiệp Cao học 69
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.22: Dòng qua cuộn cảm L2 khi có bộ điều chỉnh PID
Trên hình 4.19 biểu thị đường đặc tính dòng điện qua cuộn cảm L2, tại
thời điểm t=0 dòng điện i2=0 và nhanh chóng đạt đến giá trị cân bằng theo yêu
cầu, tại t=0.015s và t=0.03s là các thời điểm chuyển mạch thay đổi tải, quá trình
quá độ kèm sự dao động của i2 trong khoảng thời gian rất nhỏ.
Luận văn tốt nghiệp Cao học 70
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Đặc tính điện áp trên tụ C1 thể hiện trên hình 4.20 phản ánh quá trình khởi
động và sự biến động theo tải của hệ thống
Hình 4.20: Điện áp trên C1 khi có bộ điều chỉnh PID
Luận văn tốt nghiệp Cao học 71
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.21: Điện áp ra khi có bộ điều chỉnh PID
Mục tiêu của bộ biến đổi là có được điện áp ra mong muốn đạt yêu cầu, Quan
sát trên hình 4.21 ta thấy đặc tính điện áp ra của bộ biến đổi với quá trình khởi động từ
0V lên điện áp yêu cầu 25V trong khoảng thời gian xấp xỉ 0.003s, lượng quá điều
chỉnh bé và số lần dao động nhỏ (bằng 1). Khi tải biến động, kéo theo sự thay đổi
thông số hệ thống thì điện áp này vẫn được giữ ổn định, thời gian quá độ bé (xấp xỉ
0.005s) và độ sụt áp tức thời nhỏ. Hệ thống đạt các chỉ tiêu chất lượng động và tĩnh,
điện áp ra thỏa mãn yêu cầu.
5.2.2.2 Thử nghiệm tính điều chỉnh được của hệ thống
Luận văn tốt nghiệp Cao học 72
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Ở phần trên, bộ biến đổi đã được thử nghiệm khi điều khiển điện áp ra
theo điện áp đặt u=25V theo thiết kế ban đầu. Tuy nhiên, nếu trong quá trình làm
việc với tải nào đó có yêu cầu điện áp khác thì hệ thống cần phải được điều
chỉnh bám theo giá trị điện áp ra yêu cầu mới bằng cách thay đổi điện áp mẫu.
Sau đây ta tiến hành thử nghiệm mô phỏng với một số giá trị điện áp mẫu khác
nhằm đánh giá khả năng điều chỉnh của hệ thống trong dải điều chỉnh cho phép
Thay đổi U* đặt giá trị này tại khối step, Sau khi mô phỏng nhiều lần trên
mô hình Simulink với các giá trị điện áp mẫu, ta thấy rằng dải điều chỉnh của bộ
biến đổi giảm áp kiểu quadratic với các thông số mạch lực đã cho ban đầu có dải
điều chỉnh 12-30V cho ta điện áp ra đạt yêu cầu chất lượng. Kết quả mô phỏng
được trình bày trong hình 4.22, 4.23, 4.24
Hình 4.22: Điện áp ra bộ biến đổi khi đặt U*=12V
Luận văn tốt nghiệp Cao học 73
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.23: Điện áp ra bộ biến đổi khi đặt U*=30V
Hình 4.24: Điện áp ra bộ biến đổi khi đặt U*=5V, lượng quá điều chỉnh lớn
Luận văn tốt nghiệp Cao học 75
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
KẾT LUẬN
Luận văn đã giải quyết khá thành công yêu cầu của đề tài là thiết kế bộ điều
khiển trượt cho bộ biến đổi giảm áp kiểu quadratic. Đề tài này có tính cấp thiết để tối
ưu hóa chỉ tiêu kinh tế kỹ thuật cho bộ biến đổi giảm áp. Bản luận văn này đã thực hiện
được các yêu cầu sau:
- Làm rõ cấu trúc, đưa ra mô hình toán học của bộ biến đổi giảm áp kiểu
quadratic.
- Nghiên cứu nguyên lý điều khiển trượt thông qua việc nghiên cứu các khái
niệm về hệ thống cấu trúc biến, điều khiển tương đương, mặt trượt và tính tiếp cận
được của các mặt trượt...
- Xây dựng bộ điều khiển cho bộ biến đổi giảm áp kiểu quadratic trên cơ sở áp
dụng nguyên lý điều khiển trượt, khảo sát tính ổn định trên mô hình toán học hệ thống.
- Đưa ra cấu trúc của các bộ điều khiển trên nền Matlab & Simulink. Thực hiện
mô phỏng khảo sát các đặc tính chất lượng hệ thống, hoàn thiện thiết kế cho hệ thống
Với thời gian thực hiện luận văn hạn chế, đề tài mới chỉ thực hiện được mục tiêu
chính là điều khiển trượt cho bộ biến đổi giảm áp kiểu quadratic mà chưa đưa ra được
hàm truyền chi tiết vòng phản hồi dòng điện của bộ biến đổi. Hướng phát triển tiếp
theo của đề tài là khảo sát chi tiết và đưa ra được cấu trúc hàm truyền của mạch phản
hồi dòng điện và bộ điều khiển trượt làm cơ sở để tổng hợp hệ thống tối ưu hơn.
Mặc dù đã cố gắng trong cách trình bày tuy nhiên bản luận văn vẫn tồn tại
nhưng sai sót nhất định, Kính mong nhận được sự đóng góp chân thành từ các thầy cô
và các bạn đồng nghiệp cho bản luận văn được hoàn thiện hơn.
Một lần nữa tôi xin chân thành cảm ơn thầy PGS.TSKH. Nguyễn Phùng Quang
đã giúp đỡ tôi hoàn thành đề tài này, và cũng xin được bày tỏ lòng biết ơn tới các anh
các chị trong trung tâm công nghệ cao Trường đại học BKHN cũng như gia đình, bạn
bè đã tạo điều kiện giúp đỡ tôi trong quá trình làm luận văn.
Luận văn tốt nghiệp Cao học 76
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
TÀI LIỆU THAM KHẢO
[1] Hebertt Sira-Ramírez, Ramón Silva-Ortigora: Control Design Techniques in
power Electronics Devices, spinger London, 2006
[2] Nguyễn Doãn Phước, Phan Xuân Minh, Hán Thành Trung: Lý thuyết điều khiển
phi tuyến. NXB KH&KT Hà Nội, tái bản lần 2 có bổ xung, 2006
[3] Nguyễn Phùng Quang: MATLAB – Simulink dành cho kỹ sư điều khiển tự động.
NXB KH&KT Hà Nội, 2006
[4] Lê văn Doanh, Nguyễn Thế Công, Trần Văn Thịnh: Điện tử công suất. NXB
KH&KT Hà Nội, 2004
Các file đính kèm theo tài liệu này:
- ĐỀ TÀI- ĐIỀU KHIỂN TRƯỢT BỘ BIẾN ĐỔI GIẢM ÁP KIỂU QUADRATIC.pdf