Tài liệu Đề tài Nghiên cứu đa đạng di truyền của một số giống bưởi bằng kỹ thuật RAPD: MỞ ĐẦU
Bưởi (Citrus grandis L.) là cây ăn quả có tác dụng bổ dưỡng và có nhiều giá trị về mặt y học. Bưởi được trồng rộng rãi ở Việt Nam, tuy nhiên, mỗi vùng có một số giống bưởi khác nhau do kết quả của quá trình chọn lọc cũng như ảnh hưởng của điều kiện khí hậu và thổ nhưỡng. Trên đất nước ta từ lâu đã hình thành những vùng trồng bưởi và những giống bưởi nổi tiếng như bưởi Đoan Hùng (Phú Thọ), bưởi Đường Hương Sơn (Hương Sơn, Hà Tĩnh), bưởi Phúc Trạch (Hương Khê, Hà Tĩnh), bưởi Thanh trà (Huế), bưởi Biên Hòa (Đồng Nai), bưởi Năm roi, bưởi Da xanh (Vĩnh Long)… [1]. Các giống bưởi này về mặt hình thái khác nhau không đáng kể, từ lá, hoa cho đến hình dạng trái. Sự khác nhau thể hiện ở màu sắc của cùi quả, cách sắp xếp múi, màu sắc và mùi vị của tép.
Hiện nay, ở nước ta bưởi được trồng phổ biến và đem lại thu nhập cao cho bà con nông dân. Bưởi có rất nhiều giống do được trồng từ lâu và có nhiều giống du nhập từ miền Bắc và miền Nam. Để đánh giá mức độ di truyền thì việc dựa vào những c...
47 trang |
Chia sẻ: hunglv | Lượt xem: 1469 | Lượt tải: 1
Bạn đang xem trước 20 trang mẫu tài liệu Đề tài Nghiên cứu đa đạng di truyền của một số giống bưởi bằng kỹ thuật RAPD, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
MỞ ĐẦU
Bưởi (Citrus grandis L.) là cây ăn quả có tác dụng bổ dưỡng và có nhiều giá trị về mặt y học. Bưởi được trồng rộng rãi ở Việt Nam, tuy nhiên, mỗi vùng có một số giống bưởi khác nhau do kết quả của quá trình chọn lọc cũng như ảnh hưởng của điều kiện khí hậu và thổ nhưỡng. Trên đất nước ta từ lâu đã hình thành những vùng trồng bưởi và những giống bưởi nổi tiếng như bưởi Đoan Hùng (Phú Thọ), bưởi Đường Hương Sơn (Hương Sơn, Hà Tĩnh), bưởi Phúc Trạch (Hương Khê, Hà Tĩnh), bưởi Thanh trà (Huế), bưởi Biên Hòa (Đồng Nai), bưởi Năm roi, bưởi Da xanh (Vĩnh Long)… [1]. Các giống bưởi này về mặt hình thái khác nhau không đáng kể, từ lá, hoa cho đến hình dạng trái. Sự khác nhau thể hiện ở màu sắc của cùi quả, cách sắp xếp múi, màu sắc và mùi vị của tép.
Hiện nay, ở nước ta bưởi được trồng phổ biến và đem lại thu nhập cao cho bà con nông dân. Bưởi có rất nhiều giống do được trồng từ lâu và có nhiều giống du nhập từ miền Bắc và miền Nam. Để đánh giá mức độ di truyền thì việc dựa vào những chỉ thị hình thái là chưa đủ mà cần có những đánh giá sâu hơn về cấu trúc di truyền, cụ thể là hệ gen. Các kỹ thuật sinh học phân tử là công cụ hữu hiệu, đã được ứng dụng rất rộng rãi để phân tích tính đa dạng di truyền cũng như xác định mối quan hệ họ hàng giữa các loài với nhau. Trong những năm gần đây, việc sử dụng các chỉ thị phân tử giúp phát hiện các biến dị trong các giống bưởi hay các cây có múi đã trở nên phổ biến ở Việt Nam cũng như trên thế giới. Các chỉ thị phân tử sẽ cho kết quả có độ chính xác cao, tiết kiệm thời gian do các đặc điểm phân tử thường độc lập với các đặc điểm hình thái.
Kỹ thuật RAPD (Random amplified polymorphic DNA) là kỹ thuật sinh học phân tử dựa trên kỹ thuật PCR, bằng cách sử dụng những primer ngắn (khoảng 10 nucleotide) có trình tự biết trước, bắt cặp và nhân bản ngẫu nhiên những đoạn DNA có trình tự bổ sung với trình tự của các primer. Theo nguyên tắc, khi 2 cá thể hoàn toàn giống nhau, sau khi thực hiện phản ứng PCR-RAPD ở điều kiện như nhau sẽ tạo ra số lượng các đoạn bằng nhau và chiều dài các đoạn tương ứng bằng nhau. Khi có đột biến làm xuất hiện hay mất đi một vị trí bắt cặp ngẫu nhiên sẽ tạo ra số lượng và chiều dài các đoạn DNA khác nhau giữa các cá thể, vì vậy kỹ thuật RAPD có thể phát hiện đột biến. Kỹ thuật RAPD giúp nhận diện những chỉ thị phân tử trội. Việc ứng dụng kỹ thuật RAPD để nghiên cứu đa dạng di truyền đã được rất nhiều tác giả quan tâm và thực hiện trên nhiều đối tượng vi sinh vật, thực vật và động vật [63].
Để có thể phân biệt các giống bưởi dựa trên các đặc điểm di truyền, chúng tôi chọn đề tài “Nghiên cứu đa đạng di truyền của một số giống bưởi bằng kỹ thuật RAPD” nhằm khảo sát sự sai khác của các band điện di thu được.
Mục tiêu đề tài
Sử dụng chỉ thị RAPD để nghiên cứu sự đa dạng di truyền của một số giống bưởi thu thập được ở các vùng khác nhau.
Nội dung nghiên cứu
- Thu thập mẫu lá của các giống bưởi và tách chiết, tinh sạch DNA tổng số.
- Phân tích đa dạng di truyền của các giống bưởi nghiên cứu bằng kỹ thuật RAPD.
- Phân tích mối quan hệ di truyền giữa các giống bưởi nghiên cứu dựa trên giản đồ phả hệ DNA.
Chương 1.
TỔNG QUAN TÀI LIỆU
I. GIỚI THIỆU CHUNG VỀ BƯỞI VÀ GIÁ TRỊ CỦA BƯỞI
1. Giới thiệu chung về bưởi
Những ghi nhận lịch sử và phân tích di truyền có thể kết luận chỉ có 3 loài thực sự trong chi Citrus (thanh yên, quýt và bưởi) và nhiều dạng sinh học dưới loài. Cam, chanh, chanh cốm, bưởi chùm mặc dù được thừa nhận rộng rãi nhưng chúng rất giống nhau về mặt di truyền, được tạo ra do chọn lọc, nhân giống bằng chiết ghép hay bằng hạt. Sự khác nhau giữa các dạng này có nguồn gốc từ các đột biến soma. Hơn nữa, nhiều thế hệ cây lai được tạo ra và được con người chọn lọc từ các dạng ăn được hay theo các tiêu chí công nghiệp tạo nên sự đa dạng trong chi Citrus như hiện nay [52].
Bưởi thuộc họ cam chanh (Rutaceae), dưới họ Aurantioidae, tộc Citreaea, dưới tộc Citrinae (Webber, 1967). Họ Rutaceae gồm 2 tộc và 33 chi. Mỗi tộc Clauseneae và Citreae được tạo thành từ 3 dưới tộc: Clauseneae bao gồm Micromelinae, Clauseninae và Merillinae; Citrinae gồm có Triphasiinae, Citrinae và Balsamocitrinae. Citrinae gồm 3 nhóm là Citrus nguyên thủy, gần giống Citrus và Citrus thật. Citrus thật gồm 6 chi: Clymenia, Eremocitrus, Microcitrus, Poncitrus, Fortunella và Citrus (Swingle and Reece, 1967). Hai hệ thống phân loại của chi Citrus được dùng phổ biến nhất là của Swingle và Tanaka. Swingle (1967) cho rằng chi Citrus có 16 loài, trong khi đó Tanaka (1977) lại cho rằng có đến 162 loài. Tuy nhiên, Scora (1975) cho rằng chỉ có 3 loài là thanh yên (C. medica), quýt (C. reticulata), và bưởi (C. grandis hoặc C. maxima) và Papeda là một nhóm của chi Citrus [62], [39].
Bưởi thuộc cây đại mộc, cao khoảng 10 m. Lá có phiến to, dày, gân phụ 5-6 cặp, cuống có cánh rộng và có đốt vào phiến. Hoa có chùm ngắn, trục có lông, cánh hoa trắng, dài 3,5 cm, tiểu nhụy nhiều, dính nhau. Trái to, gần như tròn, to 25-30 cm, quả bì dày, nạc quanh hột trong, ngà hay hường. Bộ nhiễm sắc thể 2n=18 [8].
Bưởi là một loài cây ăn quả thân gỗ, sống lâu năm, lá thường xanh quanh năm, thân cây cao, tán cây có dạng hình tròn tự nhiên, hình dẹt hoặc nón. Cành thường to hơn cam, quýt, cành lá phát triển mạnh. Các bộ phận lá, cành, quả khi còn non thường phủ một lớp lông tơ mỏng. Nhìn chung, cây có múi có bộ rễ ăn cạn, các rễ lông mọc yếu nên khả năng hấp thụ các chất dinh dưỡng thấp [4], [16].
Bưởi có thể sinh sản hữu tính bằng hạt hay nhân giống bằng giâm, chiết cành. Thông thường bưởi được nhân giống bằng hạt và thường ít được chú ý chăm sóc, chọn lọc nên có xu hướng ngày càng đa dạng so với các loài cây kinh tế khác trong chi Citrus. Bưởi được xem là cây trồng có khả năng thích nghi rộng với khí hậu mặc dù điều kiện sống tự nhiên của chúng là ở vùng nhiệt đới ẩm [55].
Bưởi được trồng trên khắp thế giới, ở các vùng nhiệt đới và cận nhiệt đới, những nơi mà mùa đông có nhiệt độ ôn hòa, cây có thể sống sót và có đủ nước để sinh trưởng, phát triển (Gmitter và cs, 1992). Chất lượng quả bưởi tốt nhất là ở các vùng cận nhiệt đới. Các vùng trồng Citrus phổ biến nhất là châu Mỹ (Brazil, Mỹ, Argentina và Mexico), lưu vực Địa Trung Hải (Nam Âu, Tây Nam Á, Bắc Phi), châu Á (Trung Quốc, Ấn Độ và Nhật Bản) và Nam Phi. Theo FAO (2006), sản lượng bưởi và bưởi chùm trên thế giới là 4 triệu tấn, được trồng ở 74 quốc gia với diện tích là 264.000 ha. Mỹ là nước có sản lượng bưởi và bưởi chùm lớn nhất thế giới. Vùng Đông Nam Á, đặc biệt là Đông Ấn Độ, Bắc Burma và Tây Nam Trung Quốc được xem là trung tâm phát sinh và đa dạng của chi Citrus và những chi có quan hệ gần gũi với nó. Tổng sản lượng quả của chi Citrus trên toàn cầu trong thời gian 2004-2005 là 105,4 triệu tấn [36].
2. Giá trị của bưởi
Bưởi có nhiều giá trị về mặt y học đồng thời là thực phẩm ăn kiêng tốt cho nhiều loại bệnh. Bưởi có thể được sử dụng trực tiếp hay chế biến thành nhiều món ăn khác nhau như các loại mứt, bánh kẹo, gỏi và nước uống [22].
Theo Bộ nông nghiệp Hoa Kỳ, các thành phần dinh dưỡng của bưởi được xác định ở bảng 1.1.
Bảng 1.1. Thành phần dinh dưỡng của bưởi
Thành phần
Hàm lượng (100 g phần ăn được)
Nước
89,10 g
Năng lượng
38 kcal
Protein
0,76 g
Lipid tổng số
0,04 g
Tro
0,48 g
Carbohydrate
9,62 g
Chất xơ
1,0 g
Chất khoáng
Calcium
4 mg
Sắt
0,11 mg
Magnesium
6 mg
Phosphorus
17 mg
Potassium
216 mg
Sodium
1 mg
Kẽm
0,08 mg
Đồng
0,048 mg
Mangan
0,017 mg
Vitamin
Vitamin C
61,0 mg
Thiamin
0,034 mg
Riboflavin
0,027 mg
Niacin
0,220 mg
Vitamin B-6
0,036 mg
Vitamin A, IU
8 IU
Cholesterol
0 mg
Thành phần khác
β-Carotene
0 µg
α-Carotene
0 µg
β-Cryptoxanthin
10 µg
Nguồn: United States Department of Agriculture (USDA), 2004
Trong dung dịch nước ép múi bưởi có khoảng 9% citric acid, 14% đường. Ngoài ra còn có lycopin, các enzyme amylase, peroxidase, vitamin C (50 mg trong 100 g dịch ép), vitamin A và B [11].
Phần vỏ quả bưởi có thể được sử dụng để làm mứt hoặc dùng làm nguyên liệu của các hộp và thùng chứa. Hoa, quả và hạt bưởi có thể được ứng dụng trong các mục đích y tế. Hoa bưởi còn có thể được sử dụng để tách chiết các chất trong quá trình chế tạo nước hoa và pectin có thể được tách từ vỏ quả [55].
Bưởi được xem là nguồn vitamin C và các hợp chất giúp tăng cường sức khỏe như carotenoids, flavonoids, linonoids và chất xơ (Yu và cs, 2005). Các chất này có khả năng chống chất sinh ung thư và kháng đột biến, giúp con người chống lại bệnh tật. Ngoài ra, hoạt tính chống oxy hóa của bưởi còn liên quan đến sự hiện diện của nhiều loại polyphenols và acid ascorbic [56].
Bưởi chứa nhiều loại flavonoid có cấu trúc khác nhau, bao gồm flavanone và flavone O- và C-glycosides, ngoài ra còn có methoxylated flavone. Mỗi nhóm hợp chất này đều biểu hiện hoạt tính cao trong chống viêm và trị ung thư. Có bằng chứng cho rằng các tác dụng sinh học của các flavonoid ở bưởi là có liên quan đến những tương tác của chúng với các enzyme điều hòa chủ chốt tác động đến kích hoạt tế bào và gắn kết thụ thể. Các flavonoid bưởi biểu hiện hoạt tính thấp trên các tế bào khỏe mạnh, bình thường, và vì thế biểu hiện đặc tính gây độc thấp rõ rệt ở các loài động vật. Những chất này mở rộng ảnh hưởng của chúng trong cơ thể thông qua sự cảm ứng của các enzyme gan I và II, và thông qua hoạt động sinh học của các chất chuyển hóa của chúng. Như vậy, có bằng chứng rõ ràng về những đặc tính tiềm năng của các hợp chất này trong việc tăng cường sức khỏe ở con người [50].
Carotenoid được xem như là tiền chất của vitamin A – chất rất quan trọng trong chế độ ăn của con người và động vật; ngoài ra nó còn đóng vai trò là chất chống oxy hóa, giúp giảm nguy cơ mắc bệnh ung thư (Olson, 1989). Bưởi là nguồn phức hệ carotenoid với số lượng carotenoid lớn nhất được tìm thấy trong bất kỳ loại trái cây nào. Nồng độ và thành phần carotenoid thay đổi rất lớn giữa các loài bưởi và phụ thuộc vào điều kiện phát triển (Gross, 1987) [46].
Ngày nay, khoa học còn khám phá thêm những đặc tính trị liệu mới của bưởi. Trong bưởi chứa nhiều pectin, là chất sợi hòa tan chứa polysaccharide giúp hấp thu cholesterol của thức ăn và muối mật nên làm giảm cholesterol trong máu [11].
II. ỨNG DỤNG CỦA CÁC KỸ THUẬT SINH HỌC PHÂN TỬ TRONG NGHIÊN CỨU ĐA DẠNG DI TRUYỀN Ở CHI CITRUS
Trong xu hướng hiện nay, để chọn giống cây trồng hay xác định nguồn gốc của các loài cây trồng người ta thường sử dụng các chỉ thị phân tử (marker). Việc sử dụng các chỉ thị phân tử sẽ cho kết quả có độ chính xác cao, tiết kiệm thời gian do các đặc điểm phân tử thường độc lập với các đặc điểm hình thái, không chịu tác động của môi trường và chủ động trong nghiên cứu. Việc sử dụng các kỹ thuật sinh học phân tử là một công cụ đắc lực để phân tích tính đa dạng di truyền của rất nhiều loài.
Gần đây, các phân tích phân tử như phân tích trình tự các đoạn nucleotide lặp lại đơn giản (SSR-Simple sequence repeat), hay microsatellite các đoạn giữa hai SSR (ISSR-Inter-simple sequence repeat), đa hình chiều dài các đoạn cắt hạn chế (RFLP-Restriction fragment length polymorphism), đa hình các đoạn khuếch đại ngẫu nhiên (RAPD-Random amplified polymorphic DNA), đa hình các đoạn khuếch đại với các primer đặc hiệu (SCAR-Sequence characterized amplified region), phản ứng RAPD cho gen ctv (CAPS)… đã được sử dụng để kiểm tra mối quan hệ họ hàng trong số các nhóm phân loại chi Citrus [52]. So sánh với phương pháp truyền thống thì phân loại và nghiên cứu đa hình bằng các chỉ thị phân tử cho kết quả có độ tin cậy cao [3].
Trong số các chỉ thị trên thì RAPD được sử dụng phổ biến nhất để phân biệt giữa các loài khác nhau hay để xác định bản đồ gen ở các loài thực vật. Kỹ thuật này đã được sử dụng thành công trong việc xác định sự đa hình ở cà chua, cây mâm xôi, táo và cây mơ (Bogani và cs, 1994; Davis và cs, 1995; Dubouzet và cs, 1997; Mariniello và cs, 2002; Tartarini, 1996; Warburton và cs, 1996) [51].
1. Ứng dụng của kỹ thuật RAPD trong phân tích đa dạng di truyền
Kỹ thuật RAPD dựa trên nguyên tắc của PCR, sử dụng các primer ngắn không đặc hiệu để nhân bản các đoạn DNA trong genome một cách ngẫu nhiên [9]. Sự đa hình RAPD tạo thành từ sự thay đổi của 1 nucleotide, ví dụ như chèn đoạn hay mất đoạn dẫn đến thay đổi vị trí kết hợp primer (Williams và cs, 1993). Những sản phẩm của sự khuếch đại có thể là đa hình và được sử dụng như là các chỉ thị di truyền (Tingey and del Tufo, 1993) [65]. RAPD là một kỹ thuật dễ thực hiện và có giá thành rẻ, với những ưu điểm nổi bật là chỉ cần một lượng nhỏ DNA khuôn mẫu, không tạo thành phóng xạ và cho kết quả phân tích nhanh mà không đòi hỏi các thông tin về tình tự DNA của một loài (Williams et al., 1990; Martin et al., 1997). Mặc dù trong một số trường hợp, kỹ thuật RAPD có khả năng lặp lại thấp nhưng vấn đề này có thể được khắc phục bằng cách tối ưu hóa các điều kiện phản ứng (Weising et al., 1995). Nhìn chung, RAPD có thể cung cấp các dữ liệu có giá trị về sự đa dạng di truyền bên trong hoặc giữa các quần thể của một loài (Lynch and Milligan, 1994; Collignon et al., 2002) [47].
Trong kỹ thuật RAPD thì các primer ngẫu nhiên chứa 10 nucleotide là cho kết quả khuếch đại tốt nhất (Coletta Filho và cs, 1998; Elisiario và cs, 1999). Trong chi Citrus, RAPD đã được sử dụng để xác định các đột biến ở loài chanh (Deng và cs, 1995), xây dựng bản đồ gen (Cai và cs, 1994), xác định các chỉ thị liên quan với các đặc điểm nông học (Cheng và Roose, 1995; Gmitter và cs, 1996) và cho các nghiên cứu về phân loại học (Luro và cs, 1992) [33].
Tính đa dạng sinh học của các loài cây có múi ở Gò Quao (Kiên Giang) đã được Nguyễn Hữu Hiệp và cs (2004) nghiên cứu dựa vào các đặc điểm hình thái và phân tử. Các đặc điểm về hình thái học cho thấy cây có múi tại Gò Quao, Kiên Giang chia làm 5 nhóm bao gồm: bưởi, cam, quýt, chanh và hạnh. Sử dụng 4 primer là OPA02, OPA04, OPA11 và OPA13 (Operon Technologies, CA) trong phân tích đa dạng di truyền bằng kỹ thuật RAPD cho kết quả 49 chỉ thị phân tử được ghi nhận. Giản đồ phả hệ cho thấy cây có múi của Gò Quao, Kiên Giang chia thành 4 nhóm: bưởi, cam-quýt, chanh và hạnh. Kết quả phân tích cho thấy khoảng cách di truyền giữa các nhóm biến động từ 0-43%. Trong 49 chỉ thị có 11 chỉ thị xuất hiện ở 100% số cá thể, 26 chỉ thị trên 90%, 4 chỉ thị trên 80%, 2 chỉ thị trên 70%, 6 chỉ thị dưới 70% và có 1 chỉ thị là 45% [7].
Kỹ thuật RAPD đã được sử dụng để phân biệt các cây con có nguồn gốc từ phôi tâm và hợp tử tạo thành từ phép lai giữa các giống quýt Montenegrina (Citrus deliciosa Tenore) và King (C. nobilis Loureiro). Phôi được tách ra từ những hạt giống, nhân giống in vitro và thích nghi trong điều kiện nhà kính. Bốn primer ngẫu nhiên đã được sử dụng để nhận biết 54 cây có cùng nguồn gốc hữu tính từ tổng số 202 cá thể. Mức độ đa hình của mỗi primer được phản ánh qua số lượng của các cây có nguồn gốc hợp tử thu được trên mỗi primer. Thuật toán phân tích nhóm của cây bố mẹ và con cái đã sắp xếp các cá thể vào các nhóm riêng biệt với khoảng cách di truyền lớn nhất là 20% [23].
Abkenar và cs (2003) đã sử dụng kỹ thuật RAPD khi nghiên cứu các đặc điểm phân tử và khoảng cách di truyền giữa các loài Citrus ở Nhật. Đối tượng nghiên cứu gồm 31 loài Citrus khác nhau, trong đó có 6 loài cam chua, 4 loài ‘Yuzu’ và 21 loài họ hàng. Trong số 60 primer sử dụng có 27 primer được lựa chọn với 108 chỉ thị tạo thành, 76 chỉ thị trong số đó là đa hình, trung bình là 2,8 chỉ thị trên mỗi primer. Số lượng của các chỉ thị đa hình trên mỗi primer nằm trong khoảng từ 1 đến 8 và kích thước của các chỉ thị là từ 400 bp (OPA18) đến 3.200 bp (OPA01). Trong nghiên cứu này, một số chỉ thị RAPD có thể giúp phân biệt giữa các loài cây trồng rất gần gũi: OPA17 (1.100) và OPE20 (675) chỉ có ở ‘Kabosu’ mà không có ở ‘Aka kabosu’; tương tự OPA20 (1.400), OPB05 (990) và OPE16 (1.000) chỉ có ở ‘Aka kabosu’ mà không có ở ‘Kabosu’. Cây phát sinh loài được tạo thành dựa trên khoảng cách di truyền cho thấy các loài cam chua rất khác với các loài ‘Yuzu’ và họ hàng của chúng. Các loài ‘Yuzu’ có mối quan hệ gần gũi với nhau, tuy nhiên sự đa hình di truyền của các loài nghiên cứu khác có thể được xác định dễ dàng bằng kỹ thuật RAPD và sự đa dạng di truyền giữa các loài là khá cao, biểu lộ các nguồn gốc khác nhau của chúng [18].
Trong nghiên cứu nhằm xác định 10 giống chanh ở vùng Campania, miền Nam nước Ý, Mariniello và cs (2004) đã sử dụng kỹ thuật RAPD với 44 primer ngẫu nhiên có độ dài 10 nucleotide. Tất cả các primer đều được sử dụng trong phản ứng RAPD với DNA khuôn mẫu của các giống chanh nghiên cứu nhằm xác định sự đa hình. Mọi primer đều tạo ra các sản phẩm khuếch đại trong đó có 5 primer tạo ra các band có thể dùng để xác định các giống cây trồng. Sản phẩm khuếch đại của giống Sorrento khi thực hiện phản ứng với primer OPL02 cho thấy sự hiện diện 2 band (1.000-1.200bp) mà không có ở các giống khác. Giống chanh này còn tạo ra chỉ một sản phẩm khuếch đại duy nhất khi được khuếch đại với primer OPL16. Ngoài ra, primer OPL14 còn rất hữu ích trong xác định giống Amalfi với hình ảnh điện di biểu thị sự vắng mặt của các band có khối lượng phân tử cao và thấp. Giống Procida được nhận dạng bởi primer OPL19 với các band khuếch đại đặc biệt có khối lượng phân tử thấp. Cuối cùng, với việc sử dụng primer OPL31, giống Gloria d’Amalfi cho kết quả điện di không có các band khối lượng phân tử cao. Kết quả còn cho thấy mức độ tương đồng giữa các giống chanh nghiên cứu là khá cao, lớn hơn 80%, và có thể xếp chúng vào 4 nhóm. Nhóm thứ nhất bao gồm giống Napoli và S. Agnello; nhóm thứ hai gồm Gloria d’Amalfi, Sorrento, Procida, Sfusato d’Amalfi, Variegato, and Cannellino; nhóm thứ ba và nhóm thứ tư chỉ chứa 1 giống là Massa Lubrense và Amalfi [51].
Bastianel và cs (2001) đã sử dụng các chỉ thị RAPD để phân tích sự tương đồng về mặt di truyền của 15 giống thuộc chi Citrus (Citrus spp.) ở Brazil, bao gồm 4 giống cam ngọt (C. sinensis Osbeck), 4 giống quýt (C. reticulata Blanco, C. nobilis Loureiro, C. sunki Loureiro và C. deliciosa Tenore), cam chua (C. aurantium L.), bưởi chùm (C. paradisi Marcf.), bưởi (C. grandis Osbeck), thanh yên (C. medica L.), chanh cốm (C. latifolia) và 2 dạng lai [C. clementina T. × (C. tangerina T. × C. paradisi Macf.)]. Sự tương đồng di truyền của 15 giống này được quan sát từ 12 primer ngẫu nhiên, độ tương đồng di truyền giữa các giống quýt thấp nhất là 81%. Độ tương đồng thấp hơn thấy ở các loài ít quan hệ là C. medica, C. grandis và C. latifolia. Bốn giống cam ngọt (C. sinensis Osbeck) không có sự khác nhau dựa vào chỉ thị RAPD, chúng có độ tương đồng cao nhất [22].
Năm dòng khác nhau của loài cam chua (Citrus aurantium L.) biểu hiện những khác biệt có ý nghĩa về hình thái học đã được xác định bằng các chỉ thị phân tử phát triển từ kỹ thuật PCR là ISSR và RAPD. De Pasquale và cs (2006) đã phân tích các mẫu nghiên cứu với 11 primer ISSR và 6 primer RAPD (OPH04, OPAT14, OPH15, OPM04, OPO14 và OPN14). Dòng AACNR32 biểu hiện một kiểu band đặc trưng với tất cả các primer sử dụng, trong mỗi trường hợp đều có từ 1 đến 3 band đa hình mà có thể phân biệt được nó với các dòng khác. Các dòng còn lại có các kiểu band khuếch đại rất giống nhau, ngoại trừ các sản phẩm khuếch đại thu được bởi primer ISSR (CA)8RG, (AC)8YG và primer RAPD OPH04. Với primer ISSR (CA)8RG, dòng AACNR32 được phân biệt với các dòng khác bởi một đoạn khuếch đại đơn hình 1.800 bp và không có đoạn khuếch đại 800 bp mà hiện diện ở tất cả các dòng còn lại. Dòng AACNR9A được xác định bởi sự vắng mặt của đoạn khuếch đại 500 bp. Ngoài ra, dòng AACNR26A không thể phân biệt được với các dòng còn lại khi sử dụng các primer trên [33].
Machado và cs (1996) đã sử dụng kỹ thuật RAPD để đánh giá sự đa hình và sự tương đồng di truyền giữa 39 loài quýt Địa Trung Hải. Kết quả đã xác định được 111 sản phẩm khuếch đại từ 21 primer ngẫu nhiên. Trung bình mỗi primer có 2,2 chỉ thị RAPD, tương ứng với 42% của các sản phẩm khuếch đại. Các chỉ thị RAPD đặc hiệu kiểu gen đã được xác định, phần lớn là của các cây lai. Thuật toán phân tích nhóm UPGMA thể hiện sự khác biệt di truyền thấp giữa các loài quýt Địa Trung Hải, trong khi các dạng lai của chúng với những loài Citrus khác thể hiện sự khác biệt di truyền lớn hơn. Sự đa hình về mặt di truyền xác định bằng kỹ thuật RAPD cho thấy sự khác nhau giữa các mẫu là khá thấp, như vậy có thể chúng là một dòng đơn. Với số lượng dạng lai lớn cùng với sự đa hình giữa các mẫu thấp có thể khẳng định giả thuyết rằng tất cả quýt Địa Trung Hải là dạng lai của loài quýt phổ biến Citrus reticulata Blanco [49].
Năm mươi mốt cây đại diện cho 8 loài Citrus được thu thập từ Viện nghiên cứu Nông nghiệp, Lefcosia, Cyprus (ARI) đã được phân tích bởi 10 microsatellite và 6 primer RAPD. Cả 2 phép phân tích microsatellite và RAPD đều cho phép phân biệt các cây nghiên cứu ở mức độ loài. Mức độ đa hình thấp hơn đã thu được giữa các cây trong cùng loài. Trong nhóm cam (gồm 6 giống và các dòng của chúng) chỉ có 1 trong 10 primer SSR là có thể phân biệt giữa 2 nhóm cây trồng: một là giữa giống thương mại Shamouti và 2 giống địa phương, Jaffa và Aematousiki; hai là giữa giống cam Valencia và giống cam địa phương Shekeriko. Trong nhóm chanh (gồm 3 giống và các dòng của chúng), sự đa dạng của tất cả các giống nghiên cứu (giống địa phương Polyphori, Lapithou và giống thương mại Lisbon) đã được phân biệt bởi 1 primer SSR và 2 primer RAPD. Giống quýt địa phương Arakapas và Willowleaf thể hiện sự tương đồng di truyền hoàn toàn khi sử dụng cả chỉ thị microsatellite và RAPD. Kết quả này cho thấy rằng giống địa phương Arakapas có thể là một dòng của Willowleaf, có nguồn gốc từ một đột biến soma mà không được xác định bởi các chỉ thị phân tử được sử dụng. Các marker SSR không cho thấy sự đa hình giữa các dòng của các giống nghiên cứu. Các marker RAPD đặc hiệu dòng đã được xác định cho 1 dòng của Frappa và 1 dòng của Bergamot. Chỉ thị PB4-1000 tương ứng với sản phẩm khuếch đại 1 kbp được tạo ra bởi primer OPB04 chỉ có ở cây Frappa dòng 4 mà không có ở các dòng Frappa khác. So sánh kết quả phản ứng RAPD của 5 dòng Bergamot được khuếch đại bởi primer OPB04 cho thấy sự hiện diện của band 580 bp ở dòng 2 mà không thu được ở các dòng còn lại [40].
Năm quần thể loài chanh khác nhau thu được từ các noãn chưa phát triển thông qua các quá trình nuôi cấy mô khác nhau đã được kiểm tra cho sự biến dị di truyền dòng soma và biến dị do cảm ứng ánh sáng. Mẫu DNA từ 360 cây (72 cây của mỗi nhóm) đã được kiểm tra sự đa hình bằng kỹ thuật RAPD với 10 primer. Số lượng các sản phẩm khuếch đại được tạo ra bởi mỗi primer thay đổi từ 8 đến 15 với kích thước các band từ 100-3.000 bp. Trong số các cây thí nghiệm, sự biến dị di truyền chỉ được xác định bên trong nhóm cây tái sinh từ các callus phát sinh phôi được chiếu sáng. Trong số 72 cây của nhóm này, ba cây có chỉ thị RAPD khác biệt so với những cây còn lại trong quần thể. Sự đa hình của các cây 13, 35 và 36 thu được theo thứ tự bởi các primer: OPA07, OPW15 và OPN09. Trong cả 3 trường hợp này, sự khác biệt được thể hiện bởi sự vắng mặt của một sản phẩm khuếch đại cụ thể là đoạn 500 bp ở cây 13, đoạn 3.000 bp ở cây 35 và đoạn 300 bp ở cây 36 [54].
Sự đa dạng di truyền của các cây cam ngọt (Citrus sinensis Navel) được trồng ở tỉnh Mazandaran, Iran đã được Dehesdtani và cs (2007) đánh giá bằng chỉ thị RAPD. Năm mươi hai mẫu lá của các cây có ba hình thái quả khác biệt (vỏ nhẵn, vỏ nhám và vỏ nửa nhám) đã được thu thập để tiến hành thí nghiệm. Hai mươi mốt primer ngẫu nhiên đã được sử dụng trong phản ứng RAPD. Bốn trong số 21 primer sử dụng đã tạo các band đa hình có tính lặp lại. Trong số các band có kích thước từ 150 đến 2.100 bp tạo thành bởi 4 primer, có 70,13% là band đa hình. Ma trận tương đồng sử dụng hệ số Nei đã được tạo ra và các kiểu gen đã được sắp nhóm bằng phương pháp UPGMA. Sự đa hình di truyền cao nhất đã thu được trong các nhóm vỏ nhẵn và vỏ nhám [34].
Ngoài chi Citrus, kỹ thuật RAPD cũng đã được nhiều tác giả sử dụng trong nghiên cứu đa dạng di truyền ở một số đối tượng thực vật khác như đu đủ (Nguyễn Trịnh Nhất Hằng, 2005) [5], đậu xanh (Điêu Thị Mai Hoa và cs, 2005) [9], tảo (Hồ Sỹ Hạnh và cs, 2006) [6], dưa leo (Nguyễn Thị Lang, 2007) [10], lúa cạn (Nguyễn Thị Tâm và cs, 2005) [15], vải thiều (Lê Trần Bình và cs, 2004) [2]... nhằm đánh giá tính đa dạng di truyền và chọn lọc các loại cây trồng có chất lượng tốt.
Chu Hoàng Mậu và cs (2007) đã sử dụng kỹ thuật RAPD khi nghiên cứu sự đa dạng di truyền và mức độ sai khác trong cấu trúc DNA hệ gen của năm giống lạc (Aachis hypogaea L.) có khả năng chịu hạn là L14, L18, LVT, MD7, ĐBG. Các tác giả đã sàng lọc 20 primer ngẫu nhiên (10 nucleotide) và xác định được 5 primer RA31, RA40, RA45, RA46 và RA159 thể hiện sự đa hình. Kết quả điện di PCR-RAPD cho thấy số đoạn DNA nhận được ở mỗi phản ứng rất khác nhau, dao động từ 3 đến 11 đoạn. Primer xuất hiện nhiều band điện di nhất là RA40 (52 band), primer có ít band nhất là RA45 (17 band). Như vậy, với 5 primer ngẫu nhiên các tác giả đã thu được tổng số 168 band DNA từ các giống lạc nghiên cứu. Kết quả phân tích cho thấy hệ số tương đồng di truyền dao động từ 0,659 đến 0,954. Hai giống lạc ĐBG và LVT có hệ số tương đồng cao nhất là 0,954, còn hai giống lạc L18 và MD7 có hệ số tương đồng di truyền thấp nhất là 0,659. Trên sơ đồ cây thu được, 5 giống lạc được phân bố ở 2 nhóm tương ứng với 2 mức độ chịu hạn khác nhau: nhóm 1 gồm 4 giống là ĐBG, L14, LVT và MD7, có hệ số giống nhau từ hơn 0,90 đến 0,98; nhóm 2 chỉ gồm giống L18 có khả năng chịu hạn kém nhất với khoảng cách di truyền với các giống còn lại là lớn nhất (0,31) [12].
Nguyễn Thị Tâm và cs (2003) đã ứng dụng kỹ thuật PCR-RAPD vào việc đánh giá sự thay đổi ở mức độ phân tử của các dòng lúa chọn lọc HR31, HR3128, HR3494, HR3499 tái sinh từ mô sẹo chịu nhiệt độ cao ở thế hệ 3 của các giống lúa CR203, CS4 và ML107. Mười primer ngẫu nhiên đã được sử dụng trong nghiên cứu này, trong đó 5 primer RA31, RA 36, RA46, RA142, RA159 có thể hiện sự đa hình đối với dòng chọn lọc HR31 có nguồn gốc từ mô sẹo chịu nhiệt độ cao của giống CR203 và dòng chọn lọc HR3218 có nguồn gốc từ mô sẹo chịu nhiệt độ cao của giống CS4. Các primer RA31, RA32, RA36, RA142, RA159 tạo ra các band đa hình đối với các dòng chọn lọc HR3493 và HR3499 có nguồn gốc từ mô sẹo chịu nhiệt độ cao của ML107. Kết quả xác định hệ số đồng dạng di truyền của các dòng chọn lọc so với giống gốc cho thấy, dòng HR31 có hệ số di truyền sai khác so với giống gốc là 31%, dòng HR3128 là 54%, dòng HR3494 là 10%, dòng HR3499 là 41%. Những kết quả này chứng tỏ các dòng chọn lọc tạo ra từ các giống đã có những thay đổi đáng kể ở mức phân tử trong bộ gen [14].
Tình trạng di truyền của các phôi soma có nguồn gốc từ các cây con của Cymbopogon flexuosus đã được Bhattacharya và cs (2008) đánh giá bằng kỹ thuật RAPD. Mẫu DNA từ cây mẹ và 18 cây con tái sinh từ callus đơn chọn ngẫu nhiên đã được thu thập để tiến hành phản ứng RAPD với 6 primer để chọn các dòng thuần. Tổng cộng 64 band đã được tạo thành với 19 band trong số đó là đa hình. Hệ số đồng dạng di truyền dựa trên kết quả phản ứng RAPD cho thấy phần lớn các dòng nghiên cứu là đồng nhất hay giống đến hơn 92% so với cây mẹ, ngoại trừ CL2 và CL9 (66%) đã thể hiện mức độ thay đổi di truyền lớn nhất với sự có mặt của 2 band RAPD mà không có ở cây mẹ [25].
Năm 2005, Chadha và Gopalakrishna đã nghiên cứu tính đa dạng di truyền của nấm đạo ôn gây bệnh trên lúa ở Ấn Độ bằng phương pháp RADP. Nghiên cứu nhằm xác định mối quan hệ di truyền và khả năng biến đổi di truyền trong những chủng nấm đạo ôn. Tổng cộng có171 band đa hình được tạo ra khi khuếch đại với 33 primer chọn lọc ngẫu nhiên trên 20 chủng nấm đạo ôn (chiếm khoảng 64%). Kích thước của sản phẩm khuếch đại thay đổi từ 0,2-3,0 kb. Số lượng sản phẩm khuếch đại thu được là đặc trưng cho từng primer và thay đổi từ 3 (OPF03) đến 14 (OPG10 và OPG17), trung bình 8,2. Hệ số tương đồng trong các chủng từ 0,76-0,92. Sự đa hình cao có thể được giải thích do kết quả của sự tiến hóa từ tự nhiên, sự hoán vị gen do stress gây ra và sự chuyển gen ngang giữa nấm đạo ôn và vật chủ của nó. Sự hiểu biết về nguyên nhân của đa dạng nguồn bệnh sẽ giúp cải thiện những phương pháp quản lý lúa bị bệnh [29].
Trà là loại thức uống không cồn tốt cho sức khỏe phổ biến nhất trên thế giới. Cây trà (Camellia sinensis (L.) O. Kuntze) thuộc nhóm (section) Thea, chi Camellia, họ Theaceace, có nguồn gốc từ Tây Nam Trung Quốc. Sự đa dạng di truyền, mối quan hệ và đặc điểm phân tử của 15 nguồn vật liệu di truyền phổ biến ở tỉnh Zhejiang, Trung Quốc đã được Chen và cs (2005) xác định bằng kỹ thuật RAPD. Các tác giả đã sử dụng 100 primer khác nhau, trong đó 20 primer tạo ra các sản phẩm đa hình và có tính lặp lại đã được chọn lọc. Có tổng cộng 1.050 band được tạo thành, trung bình là 52,5 band trên mỗi primer hay 70 band đối với mỗi nguồn vật liệu di truyền được nghiên cứu. Kích thước của các sản phẩm khuếch đại thay đổi từ 0,4 đến 3,0 kb. Trong số 137 sản phẩm khuếch đại có 129 band là đa hình, tương ứng với 92,4%. Khoảng cách di truyền giữa các giống nghiên cứu thay đổi từ 0,16 đến 0,62; giá trị trung bình là 0,37. Mười lăm mẫu nghiên cứu đã được xếp vào 3 nhóm theo thuật toán UPGMA dựa trên các dữ liệu RAPD. Ngoài ra, tất cả 15 mẫu có thể được phân biệt dễ dàng bởi sự có mặt của 20 chỉ thị RAPD và sự vắng mặt của 11 chỉ thị [30].
Chuối được xem là một loài cây ăn quả có giá trị kinh tế và là một loại thực phẩm ăn kiêng rất tốt. Jain và cs (2007) đã phân tích mối quan hệ di truyền của 4 giống chuối khác nhau được trồng ở miền Nam Ấn Độ (Grand Naine, Red Banana, Nendran và Rasthali) bằng kỹ thuật RAPD với 3 primer (OPA19, OPB18, OPD16). Kết quả có 43,47% sản phẩm khuếch đại là band đơn hình, chung cho tất cả các kiểu gen, trong khi đó có 30,43% là band duy nhất, nhưng chỉ có 26,08% thể hiện mối quan hệ di truyền giữa các kiểu gene này. Trong số các primer đã chọn, primer OPB18 tạo ra số lượng band đa hình cao nhất (4 band), tiếp theo là primer OPA19 và primer OPD16 (1 band). Các ma trận khác nhau đã được tính toán bằng cách sử dụng chỉ số SED (squard euclidean distance) để ước đoán sự khác nhau của tất cả các cặp trong sản phẩm khuếch đại, chương trình được xây dựng bởi phương pháp của Ward sử dụng thuật toán phương sai nhỏ nhất. Sự phân tích cụm thể hiện 4 kiểu gen được xác định bằng chương trình của Grandnaine và Rasthali. Giá trị sai khác về mặt di truyền từ 2,82%-3,6%, sự sai khác lớn nhất là 3,6% được phát hiện giữa hai giống Red banana và Rasthali, và thấp nhất là ở hai giống Nendran và Rashali (2,23%) [43].
Santos và cs (2010) đã sử dụng kỹ thuật RAPD nhằm xác định đặc điểm phân tử của 7 mẫu chuối (Borneo, Grand Naine, 1304-06, 4249-05, 0337-02, 0323-03 và 4279-06) với khả năng kháng giun tròn Radopholus similis. Có tổng cộng 521 chỉ thị RAPD tạo thành từ 36 primer, tương ứng với 14,5 chỉ thị trên mỗi primer, trong đó 420 (81%) là đa hình, bao gồm cả 140 (27%) chỉ thị có tiềm năng cho ứng dụng trong các nghiên cứu lập bản đồ di truyền về khả năng đề kháng R. similis. Trong số các primer sử dụng, chỉ có 2 primer (OPH-04 và OPF-20) không tạo ra các band có ở các mẫu đề kháng và vắng mặt ở tất cả các mẫu mẫn cảm. Do đó, có đến 96% primer có khả năng tạo thành ít nhất 1 band triển vọng cho việc lập bản đồ di truyền. OPE-15, OPH-17 và OPG- 09 là những primer tạo ra số band tiềm năng lớn nhất (theo thứ tự là 12, 8 và 8). Khoảng cách di truyền giữa những mẫu nghiên cứu thay đổi từ 0,106 đến 0,455 với khoảng cách lớn nhất là giữa mẫu Borneo và kiểu gen 4279-06, được đánh giá tương ứng với mẫu nhạy cảm nhất và mẫu đề kháng cao nhất đối với giun tròn tùy thuộc yếu tố sinh sản. Thuật toán sắp nhóm dựa trên khoảng cách di truyền đã xếp 7 mẫu nghiên cứu vào ít nhất 3 nhóm, trong đó các kiểu gen có khả năng đề kháng cao nhất được xếp vào cùng một nhóm [59].
Đối với quả lê Nhật (Pyrus pyrifolia Nakai), màu sắc của vỏ quả là một đặc điểm rất quan trọng đối với cây trồng bởi vì vỏ màu nâu đỏ giúp bảo vệ quả chống lại những tác động từ bên ngoài như dịch bệnh, côn trùng, ảnh hưởng của thời tiết... Inoue và cs (2006) đã sử dụng kỹ thuật RAPD nhằm xác định chỉ thị có liên quan đến các gen có vai trò quyết định màu sắc của vỏ quả. Các dạng cây con F1 của hai phép lai của ‘Kousui’ - ‘Kinchaku’ (KK) và ‘Niitaka’ - ‘Chikusui’ (NC) được phân biệt bởi màu sắc vỏ quả đã được sử dụng cho phép phân tích. Bốn dạng khác nhau của DNA tổng số, KK với vỏ quả màu nâu đỏ (KK-R) và KK với vỏ quả màu xanh (KK-G), tương tự là NC-R và NC-G, đã được sử dụng cho phân tích RAPD với 200 primer ngẫu nhiên. Sau hai phép phân tích độc lập, có tổng cộng 893 band đã được xác định, số lượng band trung bình trên mỗi primer là 4,5. Kết quả thu được cho thấy, các band đặc hiệu có liên quan đến đặc tính vỏ màu nâu đỏ đã không thu được trong thí nghiệm này, chỉ có duy nhất band OPH19425 có liên quan với tính trạng vỏ quả màu xanh (KK-G và NC-G). Mặc dù chỉ có 86,4% DNA các cây có vỏ quả màu xanh tạo ra band này khi thực hiện phản ứng RAPD nhưng có đến 94,3% các cây có vỏ quả màu nâu đỏ không tạo ra sản phẩm khuếch đại này. Chỉ thị RAPD OPH19425 có thể phân biệt được các cây có vỏ quả màu xanh với tỉ lệ lên đến 92% [41].
2. Các kỹ thuật khác
Bên cạnh kỹ thuật RAPD, có rất nhiều loại chỉ thị phân tử khác được sử dụng để xác định sự khác nhau giữa các dạng thuộc chi Citrus, bắt đầu từ những nghiên cứu isozyme vào cuối những năm 1970 (Torres và cs, 1978), đa hình chiều dài các đoạn cắt hạn chế (RFLP) vào những năm 1980 và đầu những năm 1990, và gần đây nhất là các marker AFLP, SSR, ISSR (Fang và Roose,1997; Bretó và cs, 2001; Sankar và Moore, 2001). Bức tranh tổng thể được dựng lên từ những nghiên cứu này là sự đa dạng rất lớn từ các nhóm loài tổ tiên thuộc chi Citrus, đặc biệt là quýt và bưởi [58].
RFLP (Restriction fragment length polymorphism-đa hình chiều dài các đoạn cắt giới hạn) thể hiện sự khác nhau về kích thước các phân đoạn được tạo ra khi cắt DNA bằng các enzyme cắt giới hạn khi có sự thay đổi trình tự trên DNA bộ nhân hoặc trong các bào quan khác. RFLP có ưu điểm là marker đồng trội cho phép phân biệt được cá thể đồng hợp và dị hợp, do kích thước DNA khảo sát trong RFLP lớn vì vậy số lượng marker tạo ra nhiều đủ đáp ứng nhu cầu nghiên cứu. Phân tích RFLP đã được sử dụng thành công khi nghiên cứu đa dạng di truyền ở rất nhiều loài cây ăn quả như Prunus (Badenes và Parfitt, 1995), Diospyros (Yonemori và cs, 1998) và Mangifera (Eiadthong và cs, 1999) [19].
SSR (simple sequence repeat) là kỹ thuật dựa trên phản ứng chuỗi PCR với mục tiêu đầu tiên là nhận dạng các trình tự lặp lại đơn giản. Sau khi các trình tự lặp lại đơn giản này được nhận dạng, bước tiếp theo là xác định trình tự của DNA và thiết kế primer. Các trình tự gần kề và các trình tự lặp lại sẽ tạo nên SSR. SSR primer sau đó được sử dụng tương tự như các RAPD primer. SSR là một marker đồng trội, có tính đa hình cao và đáng tin cậy vì vậy đã được sử dụng để nghiên cứu đa dạng di truyền trên nhiều đối tượng cây trồng như cam chanh (Nunes và cs, 2002; Golein và cs, 2005), táo (Guilford và cs, 1997) và nho (Tomas và Scott, 1993) [37], [38].
Mười lăm cặp primer SSR đã được sử dụng để đánh giá mức độ đa hình trong 23 kiểu gen Citrus và 4 dạng lai tự nhiên hay đột biến chồi mà đã được chọn lọc từ Kotra Germplasm Bank (Iran). Tất cả 15 locus thí nghiệm ở thực vật có múi đều có mức độ đa hình cao, với số lượng allele trên mỗi locus thay đổi từ 4 ở TAA41 đến 12 ở CAT01, ATC09, AG14 (trung bình 8,27 allele trên mỗi locus). Thuật toán phân tích nhóm với chỉ thị SSR đã xếp các mẫu nghiên cứu vào trong 2 nhóm: nhóm A gồm Yuzo và Poncirus; nhóm B bao gồm 3 phân nhóm riêng biệt: (i) giống Fortunella sp; (ii) phân nhóm quýt: Citrus reticulate (C. clemantin), C. sinensis (Pineapple, Washington Navel), các dạng tự nhiên (Siahvaraz, Shalmahaleh, Moallemkoh và 4 dạng lai Kotra), và (iii) C. limon (Amol lemon - pear, Eureka, Rough Lemon), C. aurantifolia, C. aurantium, C. medica và C. grandis [44].
Sự đa dạng di truyền của 122 mẫu bưởi (Citrus grandis Osbeck) và các giống họ hàng của chúng đã được xác định bằng chỉ thị SSR. Yong và cs (2006) đã sử dụng 31 cặp primer SSR, kết quả tạo thành tổng cộng 34 locus và 335 band (90-335 bp), trong đó 332 band là đa hình, trung bình 10,81 band trên mỗi primer và 9,85 allele trên mỗi locus. Tỷ lệ của các locus đa hình là 99,1%. Trong tất cả các locus xác định, giá trị thông tin đa hình allele (PIC) thay đổi từ 0,1939 đến 0,9073; trung bình 0,7085 trên mỗi primer. Phân tích cây phả hệ UPGMA cho thấy các mẫu nghiên cứu có thể được xếp vào 7 nhóm trong đó nhóm 1 bao gồm các mẫu bưởi chùm (110 mẫu); nhóm 2 là C. hongheensis (3 mẫu); nhóm 3 là C. macroptera (1 mẫu); nhóm 4 tạo thành từ C. yichangensis (2 mẫu); nhóm 5 bao gồm C. reticulate, C. daoxianensis 1, C. daoxianensis 2 and C. tachibana; nhóm 6 là C. indica và nhóm 7 có C. mangshanensis. Trong số đó, các mẫu bưởi chùm có thể được chia vào 7 phân nhóm với hệ số tương đồng là 0,712 [48].
ISSR (inter-simple sequence repeats) là kỹ thuật đã được sử dụng trong nhiều nghiên cứu đa dạng di truyền (Kantety và cs, 1995; Charters và cs, 1996), và đã được dùng để phân biệt giữa các giống cây Citrus khó thực hiện bởi các marker phân tử khác (Fang và Rose, 1997). Mối quan hệ di truyền giữa các giống chanh thương mại (C. limon) đã được Capparelli và cs (2004) phân tích bằng kỹ thuật ISSR và phân tích dòng chuỗi (flow cytometry). Hai giống với các đặc điểm khá giống nhau đã được phân biệt bằng cách sàng lọc với 10 SSR primers và xác định hàm lượng DNA trong nhân trước khi nhuộm [27].
Shahsavar và cs (2007) đã sử dụng chỉ thị ISSR để nghiên cứu mối quan hệ phát sinh loài giữa 33 cây thuộc chi Citrus ở tỉnh Fars, Iran. Cây phát sinh loài đã được xây dựng dựa trên 234 đoạn ISSR (209 đoạn đa hình) bằng thuật toán phân tích nhóm UPGMA. Ba mươi ba cây trên đã được phân vào sáu nhóm chính với giá trị tương đồng trong nhóm ≥ 0,65. Nhóm 1 gồm C. sinensis và C. reticulata; nhóm 2 gồm các loài cam chua bình thường và cam chua ‘Peach’; nhóm 3 gồm ‘Bakraee’, Volkameriana và 3 dạng chọn lọc của chanh lá cam. ‘Bakraee’ là một dạng chưa xác định với đặc điểm hình thái học tương tự với cả chanh lá cam ngọt và quýt. Đây có thể là dạng lai giữa hai loài này. Nhóm 4 bao gồm chanh Lisbon (C. limon) và hai dạng chọn lọc chưa xác định ‘Rock lemon’ và ‘Pear-shaped lemon’. Nhóm 5 bao một kiểu gen duy nhất (D3) với sự tương đồng phân tử thấp nhất so với những kiểu gen khác. Nhóm 6 có thể được chia thành 2 nhóm phụ, nhóm phụ 1 bao gồm thanh yên (C. medica) và 3 dạng ‘Otroj’, ‘Bidkhoni’ từ Darab và ‘Bidkhoni’ từ Fassa. Dựa trên đặc điểm hình thái và phân tử tương tự với thanh yên thì 3 dạng này có thể được xem là các biến thể của thanh yên. Nhóm phụ còn lại bao gồm C. aurantifolia, C. latifolia và 11 kiểu gen chưa xác định với đặc điểm hình thái và phân tử giống với chanh lá cam [61].
AFLP (Amplified fragment length polymorphism-sự đa hình các đoạn cắt khuếch đại) là kỹ thuật kết hợp giữa RFLP và PCR. AFLP sử dụng enzyme cắt giới hạn cắt DNA bộ gen, sử dụng những phân đoạn DNA làm khuôn cho phản ứng khuếch đại PCR. AFLP có thể dùng để phân biệt các cá thể rất gần nhau, thậm chí ngay cả những dòng đẳng gen. AFLP nhanh, đơn giản không phức tạp như RFLP nhưng vẫn khảo sát được toàn bộ gen. Kỹ thuật này đòi hỏi ít lượng DNA ban đầu, không cần biết trước trình tự đích và độ lặp lại phản ứng cao, các primer sử dụng không cần đặc hiệu loài và các primer thương mại có thể dùng cho hầu hết các loài. Có nhiều tác giả đã sử dụng kỹ thuật này để phân tích đa dạng di truyền trên nhiều đối tượng như bưởi chùm (Cervera và cs, 1998), dừa (Pepera và cs, 1998), đu đủ (Kim và cs, 2002), Carya illinoinensis (Beedanagari và cs, 2005) [24].
Quả không hạt là một tính trạng mong muốn ở những cây thuộc chi Citrus và là mục tiêu quan trọng trong nhân giống. JinPing và cs (2009) đã sử dụng kỹ thuật đa hình chiều dài các đoạn khuếch đại AFLP để tìm ra các chỉ thị phân tử cho quýt không hạt Ponkan (C. reticulata Blanco). Tác giả đã chọn ra được 5 cặp primer có liên quan trực tiếp đến tính trạng mong muốn sau khi sàng lọc 72 cặp primer, sự bắt cặp này đã được kiểm tra bằng phân tích AFLP từ các nhóm cá thể. Năm đoạn khuếch đại đã được tạo dòng, phân tích trình tự và so sánh tương đồng, kết quả cho thấy 4 chỉ thị có sự tương đồng cao với các gen chức năng, điều này có thể giúp hiểu được cơ chế phân tử của tính trạng không hạt ở chi Citrus. Dựa trên các thông tin về trình tự, 8 primer đặc hiệu đã được thiết kế và 2 đoạn AFLP-2 và AFLP-5 đã được chuyển đổi thành công sang dạng chỉ thị SCAR (sequence characterized amplified region). Vì vậy, có thể đẩy nhanh các chương trình chọn giống bằng cách sàng lọc các đột biến không hạt dựa trên các chỉ thị đã được chọn lọc [45].
Chương 2.
ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
I. ĐỐI TƯỢNG NGHIÊN CỨU
Bưởi: Citrus grandis (L.) Osbeck
Thuộc chi: Citrus
Họ cam quýt: Rutaceae
Chúng tôi tiến hành nghiên cứu trên 18 giống bưởi thu thập được ở nhiều vùng khác nhau, mỗi giống tiến hành thu 3 mẫu ở 3 cây. Các giống bưởi này về mặt hình thái khác nhau không đáng kể, từ lá, hoa cho đến hình dạng trái. Sau khi tách chiết, điện di kiểm tra DNA tổng số và chạy PCR-RAPD thử nghiệm với một số primer, chúng tôi đã lựa chọn mỗi giống một mẫu DNA tổng số có khả năng khuếch đại tốt để làm khuôn mẫu cho các phản ứng PCR-RAPD tiếp theo. Địa điểm thu mẫu của 18 giống bưởi nghiên cứu được trình bày trong bảng 2.1.
Bảng 2.1. Địa điểm thu mẫu của 18 giống bưởi
STT
Giống bưởi
Địa điểm thu mẫu
1
Bưởi Thanh Trà
Thủy Biều, Huế
2
Bưởi Năm roi
Ấp An Thiên, huyện Mỏ Cày Nam, Bến Tre
3
Bưởi Da xanh
Bến Tre
4
Bưởi Phúc Trạch
Quảng Bình
5
Bưởi Bành
Thủy Biều, Huế
6
Bưởi Láng
Thủy Biều, Huế
7
Bưởi Tàu
Thủy Biều, Huế
8
Bưởi Trẹm
Thủy Biều, Huế
9
Bưởi Thanh du
Thủy Biều, Huế
10
Bưởi Đỏ
Thủy Biều, Huế
11
Bưởi Hồng da xanh
Trung tâm nghiên cứu và phát triển Nông nghiệp Huế
12
Bưởi Cốm
Trung tâm nghiên cứu và phát triển Nông nghiệp Huế
13
Bưởi Trắng
Lại Bằng, Huế
14
Bưởi Thái Lan
Lại Bằng, Huế
15
Bưởi Trụ lông
Quảng Nam
16
Thanh trà Tiên Phước
Quảng Nam
17
Bưởi Đường lá goắn
Bến Tre
18
Bưởi Hải Phòng
Quảng Bình
II. PHƯƠNG PHÁP NGHIÊN CỨU
Đồ án của chúng tôi được tiến hành từ tháng 01/2011 đến tháng 05/2011 tại Phòng thí nghiệm Công nghệ gene, Viện Tài nguyên, Môi trường và Công nghệ sinh học, Đại học Huế.
1. Tách chiết genomic DNA
DNA được tách chiết từ lá của các giống bưởi theo phương pháp của Ahmed và cs (2009) [20] có cải tiến: cắt lá bưởi (200 mg) thành từng mảnh nhỏ, đồng hóa mẫu với 500 µL đệm chiết DNA (100 mM Tris-HCl, 100 mM EDTA, 250mM NaCl). Sau đó thêm 40 µL SDS 20%, vortex 30 giây rồi ủ ở 65oC trong 30 phút. Mẫu được chiết 2 lần với cùng thể tích của hỗn hợp phenol: chloroform: isoamylalcohol (25 : 24 : 1) để loại bỏ protein và lấy dịch trong chứa DNA hòa tan ở pha trên. Loại polysaccharide bằng ether hydrat hóa. Kết tủa DNA bằng ethanol 100% lạnh trong 30 phút ở -20oC. Thu kết tủa DNA bằng ly tâm 11.000 vòng/phút, ở 25oC trong 12 phút. Rửa tiểu thể DNA bằng ethanol 70%. Hòa tan tiểu thể bằng nước cất vô trùng, thêm 1 µL RNase, bảo quản ở -20oC dùng làm nguyên liệu cho phản ứng PCR-RAPD. Nồng độ và độ tinh sạch của DNA tổng số được xác định bằng phương pháp quang phổ trên máy NanoDrop ND-1000 (Thermo, Mỹ).
2. Phân tích RAPD
DNA tổng số của lá bưởi được dùng làm khuôn mẫu để khuếch đại PCR-RAPD. Hỗn hợp phản ứng PCR-RAPD bao gồm 10 pmol primer ngẫu nhiên, 4 mM MgCl2, 0,4 mM dNTP mỗi loại, 0,625 unit/µl Taq DNA polymerase (PCR Master Mix 2×, Fermentas, Đức); 25 ng DNA khuôn mẫu với tổng thể tích phản ứng là 25 µl. Phản ứng PCR-RAPD được thực hiện theo phương pháp của Coletta Filho và cs (1998) [31] với 25 primer ngẫu nhiên (Operon Technologies, CA) (Bảng 2.2). Quy trình phản ứng khuếch đại PCR: biến tính 92oC/2 phút; 42 chu kỳ: 92oC/1 phút, 36oC/1 phút, 72oC/2 phút; và cuối cùng là 72oC/10 phút. Sản phẩm PCR-RAPD được điện di trên agarose gel 1,4% và nhuộm bằng ethidium bromide 0,006%. Hình ảnh điện di được thu nhận bằng hệ thống Gel Documentation và phân tích bằng chương trình Quantity One (Bio-Rad, Mỹ).
Bảng 2.2. Trình tự của các primer sử dụng
STT
Primer
Trình tự 5’-3’
Tài liệu tham khảo
1
A02
TGCCGAGCTG
Vũ Thị Nhuận và cs, 2005 [13]
2
A04
AATCGGGCTG
Vũ Thị Nhuận và cs, 2005 [13]
3
A18
AGGTGACCGT
Shaaban và cs, 2006 [60]
4
A15
TTCCGAACCC
Shaaban và cs, 2006 [60]
5
C09
CTCACCGTCC
Shaaban và cs, 2006 [60]
6
B05
TGCGCCCTT C
Andrade-Rodriguez và cs, 2004 [21]
7
8
B17
B10
AGGGAACGAG
CTGCTGGGAC
Andrade-Rodriguez và cs, 2004 [21]
Cevik và cs, 2007 [28]
9
C02
GTGAGGCGTC
Cevik và cs, 2007 [28]
10
C04
CCGCATCTAC
Cevik và cs, 2007 [28]
11
B04
GGACTGGAGT
Cevik và cs, 2007 [28]
12
C05
GATGACCGCC
Cevik và cs, 2007 [28]
13
C08
TGGACCGGTG
Cevik và cs, 2007 [28]
14
AA10
TGGTCGGGTG
Rao và cs, 2008 [57]
15
AD10
AAGAGGCCAG
Rao và cs, 2008 [57]
16
A11
CAATCGCCGT
Cai và cs, 1994 [26]
17
A09
GGGTAACGCC
Cai và cs, 1994 [26]
18
A01
CAGGCCCTTC
Coletta Filho và cs, 1998 [31]
19
AT14
GTGCCGCACT
Coletta Filho và cs, 1998 [31]
20
N09
TGCCGGCTTG
Orbović và cs, 2008 [54]
21
L17
CTGCAATGGG
Mariniello và cs, 2004 [51]
22
M20
GGTGCACGTT
Elisiario và cs, 1999 [35]
23
K16
GAGCGTCGAA
Elisiario và cs, 1999 [35]
24
N06
GAGACGCACA
Yi và cs, 2006 [64]
25
N02
ACCAGGGGCA
Yi và cs, 2006 [64]
3. Xây dựng giản đồ phả hệ
Xây dựng giản đồ phả hệ và phân tích cụm theo thuật toán UPGMA dựa trên hệ số Jaccard (1908) [42] bằng phần mềm NTSYS 2.1 (Exeter Software, Mỹ) trên cơ sở xuất hiện hay không xuất hiện của các band trên phổ điện di sản phẩm PCR-RAPD của các mẫu với các primer theo nguyên tắc đánh số "1" nếu có xuất hiện band và số "0" nếu không xuất hiện band.
Các band được ký hiệu bằng tên primer khuếch đại và kích thước của band đó.
Chương 3.
KẾT QUẢ VÀ THẢO LUẬN
I. CHẤT LƯỢNG DNA TỔNG SỐ
Chúng tôi tiến hành tách chiết DNA tổng số từ lá của 18 giống bưởi nghiên cứu theo phương pháp của Ahmed và cs (2009) [20] có cải tiến. Sản phẩm tách chiết DNA tổng số được điện di trên agarose gel 0,8% và đo độ hấp thụ quang (OD260/280) để xác định nồng độ và kiểm tra chất lượng. Kết quả kiểm tra cho thấy DNA tổng số của 18 mẫu nghiên cứu khá sạch (tỷ lệ hấp thu ở bước sóng 260/280 nm từ 1,73-1,81), ít bị đứt gãy và nồng độ các mẫu tương đối đồng đều. Chất lượng và nồng độ DNA của các mẫu đáp ứng yêu cầu cho các phản ứng PCR-RAPD. Kết quả được trình bày ở hình 3.1 và bảng 3.1.
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Hình 3.1. DNA tổng số của các giống bưởi nghiên cứu
Hình 3.1. DNA tổng số của các giống bưởi nghiên cứu
M: marker Lambda/HindIII, 1: Bưởi Thanh trà, 2: Bưởi Năm roi, 3: Bưởi Da xanh, 4: Bưởi Phúc Trạch, 5: Bưởi bành, 6: Bưởi láng, 7: Bưởi Tàu, 8: Bưởi trẹm, 9: Bưởi Thanh du, 10: Bưởi đỏ, 11: Bưởi Hồng da xanh,12: Bưởi cốm, 13: Bưởi trắng, 14: Bưởi Thái Lan, 15: Bưởi Trụ lông, 16: Thanh trà Tiên Phước, 17: Bưởi Đường lá goắn, 18: Bưởi Hải Phòng
Bảng 3.1. Tỷ lệ hấp thụ ở bước sóng 260/280 nm và nồng độ và của các mẫu DNA từ lá
Mẫu
A260/280
ng/µL
Bưởi Thanh trà
1,75
236,8
Bưởi Năm roi
1,62
195,0
Bưởi Da xanh
1,73
330,8
Bưởi Phúc Trạch
1,73
309,5
Bưởi bành
1,73
294,1
Bưởi láng
1,70
323,1
Bưởi Tàu
1,79
250,7
Bưởi trẹm
1,79
213,4
Bưởi Thanh du
1,77
280,3
Bưởi đỏ
1,73
319,6
Bưởi Hồng da xanh
1,72
304,8
Bưởi cốm
1,73
277,3
Bưởi trắng
1,81
218,6
Bưởi Thái Lan
1,69
335,5
Bưởi Trụ lông
1,72
189,7
Thanh trà Tiên Phước
1,70
219,7
Bưởi Đường lá goắn
1,69
259,2
Bưởi Hải Phòng
1,71
258,6
II. ĐA HÌNH DNA CỦA CÁC GIỐNG BƯỞI
Hai mươi lăm primer ngẫu nhiên đã được sử dụng để phân tích đa hình DNA của 18 giống bưởi nghiên cứu. Kết quả phân tích sản phẩm PCR-RAPD trên gel agarose 1,4% cho thấy tổng cộng có 298 band DNA được tạo ra. Primer có số band DNA khuếch đại nhiều nhất là L17 (22 band), tiếp đến là C05 (21 band) và A02 (20 band). Hai primer có số band DNA khuếch đại ít nhất là B05 và AD10 (4 band). Trong số 25 primer sử dụng có 8 primer (A02, A18, B10, C02, C08, AD10, AT14, N06) cho sản phẩm khuếch đại ở tất cả 18 giống bưởi, tiếp theo là sáu primer (A04, C09, B17, AA10, N09, K16) với 17 giống được khuếch đại. Primer có số giống bưởi khuếch đại ít nhất là A01 (14 giống) (Bảng 3.2).
Bảng 3.2. Số cây khuếch đại và số band khuếch đại của từng primer
STT
Primer
Số cây
khuếch đại
Tổng số band DNA của
từng primer
Phạm vi kích
thước band
DNA (bp)
Số band DNA đa hình (%)
Số band DNA duy nhất
1
A01
14
6
346-838
100
0
2
A02
18
20
429-2.194
95,0
2
3
A04
17
12
287-1.431
100
1
4
A09
16
12
540-1.667
100
4
5
A11
16
16
476-2.079
100
4
6
A15
16
13
436-3.836
100
0
7
A18
18
6
359-2.353
83,33
2
8
AA10
17
9
429-2.259
100
2
9
AD10
18
4
400-982
100
1
10
AT14
18
12
335-1.997
91,67
2
11
B04
15
13
320-1.702
100
4
12
B05
16
4
630-1.187
100
0
13
B10
18
8
360-1.444
100
3
14
B17
17
6
471-1.779
100
1
15
C02
18
16
444-2.169
100
3
16
C04
16
11
352-1.733
100
3
17
C05
16
20
422-2.770
100
3
18
C08
18
10
346-1.317
100
3
19
C09
17
15
418-2.467
100
1
20
M20
16
15
313-1.913
100
1
21
N02
16
12
302-1.932
100
3
22
N06
18
10
348-1.045
100
4
23
N09
17
12
497-1.813
100
4
24
L17
16
22
381-2.873
100
0
25
K16
17
13
425-2.525
100
4
Tổng
298
295
55
Kết quả ở bảng 3.2 cho thấy, tất cả các primer đều biểu hiện sự đa hình, số lượng band khuếch đại là từ 4 đến 22 band tùy primer và mẫu DNA. Kích thước của các band khoảng từ 287 bp đến 3.836 bp. Trong số 298 band DNA tạo thành có 295 band là đa hình (98,99%), tỷ lệ band đa hình trên mỗi primer là 11,8; cao hơn so với nghiên cứu trên một số giống bưởi trồng ở Việt Nam của Nguyễn Xuân Thụ và cs (9,54) [17]. Tỷ lệ các band đa hình cao chứng tỏ các giống bưởi nghiên cứu có quan hệ di truyền xa nhau.
Trong số 295 band đa hình có đến 55 band DNA duy nhất, chiếm 18,46%. Các band DNA này chỉ xuất hiện ở một giống bưởi mà không xuất hiện ở các giống bưởi còn lại, do đó chúng rất có ý nghĩa trong nghiên cứu nhằm phân biệt các giống bưởi khác nhau. Trong 18 giống bưởi nghiên cứu có 14 giống được đặc trưng bởi ít nhất 1 band DNA duy nhất khi thực hiện phản ứng PCR-RAPD với 25 primer, trong đó nhiều nhất là giống bưởi Đường lá goắn tạo thành 9 band từ 6 primer, tiếp đến là giống bưởi Thái Lan có 5 band từ 5 primer và bưởi Trắng có 5 band từ 4 primer. Như vậy có thể bước đầu nhận định rằng ba giống bưởi này có sự sai khác đáng kể so với các giống còn lại. Bốn giống bưởi không tạo thành band duy nhất với tất cả primer sử dụng là bưởi Da xanh, bưởi Bành, bưởi Tàu và bưởi Hồng da xanh. Bảng 3.3 biểu thị các chỉ thị RAPD đặc hiệu cho 14 trong số 18 giống bưởi nghiên cứu.
Bảng 3.3. Các chỉ thị RAPD đặc trưng cho các giống bưởi nghiên cứu
Giống
Chỉ thị RAPD đặc trưng
Bưởi Thanh trà
C09-1.289, AT14-589, AT14-335, N06-443
Bưởi Năm roi
AA10-740, B10-360, N09-880, N09-540
Bưởi Phúc Trạch
A09-1.667, AD10-500, M20-542
Bưởi Láng
A04-287, A18-726, N02-836, N06-655
Bưởi Trẹm
A11-674, A18-1.811
Bưởi Thanh du
K16-2.027
Bưởi Đỏ
B04-1.143, C04-890, N02-325, N02-302
Bưởi Cốm
A02-2.194, B04-520, B04-320
Bưởi Trắng
A11-782, C04-1.041, C08-630, C08-477, N06-885
Bưởi Thái Lan
A02-1.031, A09-1.092, A11-1.002, B17-471, C08-675
Bưởi Trụ lông
C02-680, B10-1.094, B10-855
Thanh trà Tiên Phước
A11-476, C02-771, K16-1.222, K16-737
Bưởi Đường lá goắn
A09-1.372, A09-1.166, AA10-882, C02-1.004, C05-2.027, C05-811, N09-1.099, N09-904, K16-818
Bưởi Hải Phòng
N06-762, B04-1.702, C04-352, C05-706
416 bp
780 bp
23130 bp
4361 bp
2027 bp
564 bp
287 bp
1237 bp
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hình 3.2. Hình ảnh điện di PCR-RAPD với primer A04
Hình 3.2 biểu thị kết quả điện di sản phẩm PCR-RAPD của 18 giống bưởi nghiên cứu với primer A04, trong đó có band A04-287 đặc trưng cho giống bưởi Láng.
Trong số 25 primer sử dụng có 21 primer có khả năng tạo thành ít nhất 1 band DNA duy nhất đặc trưng cho một giống bưởi nào đó. Có 6 primer tạo thành nhiều band DNA duy nhất (4 band) là B04, A11, A09, N09, K16 và N06. Kết quả điện di với primer N06 (Hình 3.3) gồm có 4 band DNA duy nhất, đặc trưng cho các giống là bưởi Trắng (N06-885), bưởi Hải Phòng (N06-762), bưởi Láng (N06-665) và bưởi Thanh trà (N06-443).
348 bp
23130 bp
4361 bp
2027 bp
564 bp
443 bp
1045 bp
590 bp
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hình 3.3. Hình ảnh điện di PCR-RAPD với primer N06
Như vậy, tùy thuộc vào giống bưởi xác định cần nghiên cứu có thể sử dụng primer thích hợp để phân biệt nó với các giống còn lại. Ví dụ như sử dụng primer AA10 để xác định bưởi Năm roi (AA10-742) và bưởi Đường lá goắn (AA10-882); primer B04 xác định bưởi Đỏ (B04-1.143), bưởi Cốm (B04-520 và B04-320) và bưởi Hải Phòng (B04-1.702); primer B17 xác định bưởi Thái Lan (B17-471);…
Một số công trình của nhiều tác giả nhằm xác định sự đa dạng di truyền của các giống thuộc chi Citrus cũng đã xác định được các chỉ thị đặc hiệu cho các mẫu thí nghiệm, như Filho và cs (1998) trong nghiên cứu sự tương đồng di truyền trên 35 mẫu quýt đã xác định đươc các chỉ thị RAPD đặc hiệu cho một số mẫu như ‘Shekwasha’ (OPA01-1.720, OPH15-1.260, OPA14-690), ‘Murcott’ (OPH15-950) và ‘Heennaran’ (OPN14-2.000) [31]; Corazza-Nunes và cs (2002) trong nghiên cứu đa dạng di truyền của 38 mẫu bưởi chùm (Citrus paradisi Macf.) và 3 mẫu bưởi (C. maxima (Burm.) Merr..) đã xác định được các chỉ thị đặc hiệu cho ‘Siamesa-Filipinas’ (OPB17-1.640), ‘do Cabo’ (OPC6-1.285) và ‘Pernambuco’ (OPB7-447) [32].
Kết quả điện di sản phẩm PCR-RAPD của cả 25 primer chỉ tạo thành 3 band đơn hình, đó là các band A02-1.454, A18-359 và AT14-782. Số lượng các band đơn hình thấp cho thấy 18 giống bưởi nghiên cứu rất khác biệt về mặt di truyền. Hình ảnh điện di của các giống nghiên cứu bởi primer A18 được trình bày ở hình 3.2. Trong số 6 band DNA được tạo thành có 5 band đa hình (2 band duy nhất) và 1 band đơn hình (A18-359). Mặc dù số band DNA tạo thành không nhiều nhưng tính đa hình giữa các mẫu nghiên cứu được thể hiện khá rõ. Kết quả này tương tự với kết quả của Shaanban và cs (2006) khi sử dụng primer A18 nhằm xác định sự đa dạng di truyền của 7 mẫu cam địa phương. Có tổng cộng 50 band DNA được tạo thành và tất cả đều là band đa hình, thể hiện sự khác biệt giữa các mẫu nghiên cứu [60].
359 bp
525 bp
726 bp
1221 bp
2353 bp
564 bp
2027 bp
4361 bp
23130 bp
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hình 3.4. Hình ảnh điện di PCR-RAPD với primer A18
Như vậy, trong tổng số 25 primer chúng tôi sử dụng để nghiên cứu có 8 primer cho sản phẩm khuếch đại ở tất cả 18 giống bưởi là A02, A18, B10, C02, C08, AD10, AT14 và N06. Primer có số giống bưởi khuếch đại ít nhất là A01 (14 giống). Primer có số band DNA khuếch đại nhiều nhất là L17 (22 band), hai primer có số band DNA khuếch đại ít nhất là B05 và AD10 (4 band). So với một số nghiên cứu khác trên các loài thuộc chi Citrus, kết quả nghiên cứu của chúng tôi có sự khác biệt, chẳng hạn như Elisiario và cs (1999) đã thu được 12 band DNA từ quýt Carvalhais với primer AD10 [35], Cevik và cs (2007) khi xây dựng bản đồ di truyền liên kết cho các loài thuộc chi Citrus đã thu được 10 band với primer B05 [28].
Đối với phản ứng PCR-RAPD, việc sàng lọc các primer ngẫu nhiên để chọn ra primer phù hợp cho từng đối tượng cụ thể là rất cần thiết. Nguyen Thanh Nhan và cs (2003) khi nghiên cứu đa dạng di truyền các loài thuộc chi Citrus ở Việt Nam đã sàng lọc 15 primer thích hợp trong số 150 primer [53]; Cai và cs (1994) đã chọn lọc được 69 primer trong 140 primer để xây dựng giản đồ phả hệ của chi Citrus [26]. Qua kết quả nghiên cứu, chúng tôi xác định được 5 primer vừa có khả năng khuếch đại DNA ở cả 18 giống bưởi vừa có thể tạo thành nhiều band là A02 (20 band), C02 (18 band), AT14 (12 band), C08 và N06 (10 band). Các primer này rất phù hợp cho mục đích nghiên cứu sự đa hình giữa các giống bưởi và xác định khoảng cách di truyền giữa chúng.
Bảng 3.4. Số band khuếch đại của các cây với từng primer
Primer
Số band của từng primer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
A02
5
7
7
8
6
7
6
7
7
6
5
8
6
7
3
4
6
6
A04
4
3
6
3
9
8
8
8
11
9
7
5
5
5
1
1
0
4
A18
1
1
3
4
4
4
3
4
3
3
3
4
2
2
1
1
1
1
A15
0
2
3
10
12
12
11
11
11
11
11
5
11
4
0
3
5
2
C09
1
1
3
7
8
7
2
7
8
9
7
4
4
2
0
4
2
3
B05
2
2
2
3
3
3
3
2
2
2
2
2
2
1
0
0
1
1
B10
3
2
3
2
2
2
2
1
1
2
2
2
1
2
3
2
2
2
B17
1
1
2
4
4
4
2
2
4
3
3
1
1
2
0
1
1
1
C02
7
8
9
9
10
10
9
8
10
10
10
8
8
8
1
8
8
8
C04
3
3
4
4
7
6
4
4
6
8
6
4
5
4
0
2
0
4
B04
0
0
3
7
6
7
5
3
4
8
6
6
3
3
0
5
3
4
C05
0
4
2
9
11
11
11
10
13
13
11
10
10
11
0
10
8
9
C08
1
3
2
2
1
1
1
1
2
2
2
3
3
4
1
3
2
2
AA10
3
4
3
4
3
3
4
4
2
4
5
4
4
4
0
1
3
3
AD10
2
3
3
3
3
3
3
2
3
3
2
2
2
2
2
1
1
2
A11
0
9
6
10
10
10
10
11
10
10
10
7
9
7
0
7
7
10
A09
2
1
4
8
4
3
3
5
5
3
0
2
4
6
0
3
6
4
A01
0
0
1
5
5
4
3
1
4
3
3
3
1
1
0
0
1
1
AT14
5
4
4
8
9
8
7
8
9
8
9
7
8
4
1
5
4
4
N09
2
3
3
3
4
3
2
3
3
3
4
4
4
4
0
4
4
3
L17
0
4
6
15
16
17
14
11
15
17
17
7
12
8
0
11
4
8
M20
0
2
5
10
10
9
7
5
8
10
8
6
8
7
0
7
7
8
K16
1
5
4
6
6
5
6
5
6
5
5
3
3
3
0
6
6
3
N06
3
3
4
3
3
4
4
4
4
4
4
4
4
3
1
4
3
4
N02
2
3
2
7
7
8
7
7
8
9
8
7
7
7
0
4
4
0
Tổng cộng
48
78
94
154
163
159
137
134
159
165
150
118
127
111
14
97
89
97
Theo bảng 3.4, giống có nhiều band DNA khuếch đại nhất với các primer sử dụng là bưởi Đỏ (165 band), chiếm tỷ lệ 55,37% tổng số band DNA tạo thành, tiếp đến là bưởi Bành (163 band), bưởi Láng và bưởi Thanh du (cùng 159 band). Số band DNA lớn nhất mà một giống bưởi có thể tạo thành với một primer là 17 band, đó là bưởi Đỏ và bưởi Hồng da xanh cùng tạo thành 17 band với primer L17 (hình 3.5)
23130 bp
4361 bp
2547 bp
2027 bp
1344 bp
960 bp
602 bp
564 bp
381 bp
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hình 3.5. Hình ảnh điện di PCR-RAPD với primer L17
Trong 18 giống bưởi nghiên cứu, hầu hết đều cho kết quả khuếch đại tốt với 25 primer sử dụng, chỉ có bưởi Thanh trà và bưởi Trụ lông cho hiệu quả khuếch đại kém hơn với 48 và 14 band tạo thành. Bưởi Trụ lông chỉ tạo thành sản phẩm khuếch đại trong phản ứng PCR-RAPD ở 9/25 primer (A02, A04, A18, B10, C02, C08, AD10, AT14 và N06), trong đó 6 primer có sản phẩm tạo thành chỉ gồm 1 band, một primer tạo thành 2 band và 2 primer tạo thành 3 band. Nếu so sánh với sản phẩm PCR-RAPD của các giống bưởi còn lại thì đây là giống bưởi có sự khác biệt lớn nhất. Kết quả điện di sản phẩm PCR-RAPD của 18 giống bưởi bởi primer AT14 được trình bày ở hình 3.6. Primer này tạo thành 12 band khi thực hiện phản ứng PCR-RAPD với 18 giống bưởi nghiên cứu, trong đó có 3 giống tạo thành 9 band (bưởi Bành, bưởi Thanh du và bưởi Hồng da xanh). Giống bưởi Trụ lông chỉ tạo thành duy nhất band AT14-782.
23130 bp
4361 bp
1621 bp
2027 bp
564 bp
782 bp
523 bp
335 bp
366 bp
M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hình 3.6. Hình ảnh điện di PCR-RAPD với primer AT14
III. MỐI QUAN HỆ DI TRUYỀN CỦA CÁC GIỐNG BƯỞI NGHIÊN CỨU
Hệ số đồng dạng di truyền của các giống bưởi nghiên cứu từ 0,04 (giữa bưởi Trụ lông với 11 giống bưởi khác là bưởi Phúc Trạch, bưởi Bành, bưởi Láng, bưởi Tàu, bưởi Trẹm, bưởi Thanh du, bưởi Đỏ, bưởi Hồng da xanh, bưởi Cốm,bưởi Trắng và bưởi Đường lá goắn) đến 0,79 (giữa bưởi Bành và bưởi Láng) (Bảng 2 phụ lục), chứng tỏ giữa chúng có sự khác biệt di truyền khá lớn. Giản đồ phả hệ DNA của các giống bưởi nghiên cứu được trình bày ở hình 3.7.
A
Bưởi Thanh trà
Bưởi Da xanh
Bưởi Năm roi
B1
Bưởi Hải Phòng
Bưởi Đường lá goắn
Thanh trà Tiên Phước
Bưởi Bành
Bưởi Phúc Trạch
B
Bưởi Láng
Bưởi Đỏ
Bưởi Thanh du
Bưởi Tàu
Bưởi Hồng da xanh
B2
Bưởi Trẹm
Bưởi Trắng
Bưởi Cốm
C
Bưởi Thái Lan
Bưởi Trụ lông
Hệ số đồng dạng di truyền
Hình 3.7. Giản đồ phả hệ DNA của các giống bưởi nghiên cứu
Các giống bưởi được chia thành 3 nhóm chính có độ tương đồng di truyền rất thấp (khoảng 0,05), nhóm thứ nhất (nhóm A) chỉ gồm 1 giống (bưởi Thanh trà), nhóm thứ hai (nhóm B) gồm 16 giống (bưởi Năm roi, bưởi Da xanh, bưởi Phúc Trạch, bưởi Bành, bưởi Láng, bưởi Tàu, bưởi Trẹm, bưởi Thanh Du, bưởi Đỏ, bưởi Hồng da xanh, bưởi Cốm, bưởi Trắng, bưởi Thái Lan, Thanh trà Tiên Phước, bưởi Đường lá goắn và bưởi Hải Phòng), bưởi Trụ lông nằm tách biệt trên nhóm thứ 3 (nhóm C) của giản đồ di truyền.
Nhóm A chỉ gồm 1 giống duy nhất là bưởi Thanh trà với 48 band DNA được khuếch đại bởi 18 primer, đây là giống bưởi có số band tạo thành tương đối thấp.
Nhóm B bao gồm những giống có số band DNA khuếch đại lớn hơn với số band tạo thành từ 78 band (bưởi Năm roi) đến 165 band (bưởi Đỏ). Nhóm B được chia thành 2 nhóm nhỏ với độ tương đồng di truyền xấp xỉ 0,38; trong đó nhóm B1 gồm 5 giống có độ tương đồng 0,42 (số band DNA tạo thành từ 78-97 band), bưởi Đường lá goắn nằm tách biệt trên 1 nhánh, nhánh còn lại bao gồm bưởi Năm roi, bưởi Da xanh, bưởi Hải Phòng và Thanh trà Tiên Phước, trong đó bưởi Năm roi và bưởi Da xanh có độ tương đồng lớn nhất (0,57). Nhóm B2 gồm 11 giống với độ tương đồng di truyền khoảng 0,48 trong đó 3 giống bưởi Cốm, bưởi Trắng và bưởi Thái Lan nằm trên 1 nhánh, nhánh còn lại bao gồm 8 giống (bưởi Phúc Trạch, bưởi Bành, bưởi Láng, bưởi Thanh du, bưởi Đỏ, bưởi Hồng da xanh, bưởi Tàu, bưởi Trẹm) với độ tương đồng lớn nhất là giữa 2 giống bưởi Bành và bưởi Láng (0,79). Đây là nhóm gồm các giống có số band DNA tạo thành lớn nhất (111-165 band).
Tương tự nhóm A, nhóm C cũng gồm một giống duy nhất là bưởi Trụ lông. Kết quả này là phù hợp với các nhận định ban đầu về sự khác biệt trong sản phẩm PCR-RAPD của bưởi Trụ lông so với các giống khác. Bưởi Trụ lông là giống nghiên cứu có số band khuếch đại bởi 25 primer là ít nhất (14 band) và chỉ tạo thành sản phẩm ở 9/25 primer.
Qua phân tích giản đồ phả hệ chúng tôi nhận thấy có sự khác biệt rõ rệt về di truyền giữa 2 giống là bưởi Thanh trà và bưởi Trụ lông và các giống còn lại với hệ số tương đồng di truyền thấp nhất, chỉ từ 0,04 đến 0 ,. Vũ Thị Nhuận và cs (2005) đã nghiên cứu đa dạng di truyền của 146 cây bưởi Năm Roi ở xã Mỹ Hòa, huyện Bình Minh, tỉnh Vĩnh Long bằng phương pháp RAPD. Kết quả cho thấy tập đoàn bưởi ở đây được chia làm 6 nhóm, trong đó có 5 nhóm giống nhau nhiều và 1 nhóm khác hẳn [13].
Theo Nei và cs (1978), số lượng band DNA được khuếch đại càng nhiều thì khả năng phân biệt chúng trên cây phả hệ càng lớn, trong đó số band đa dạng tối thiểu là 50 mới có thể xây dựng cây phả hệ chính xác. Với 295 band DNA đa hình của 18 giống bưởi sử dụng 25 primer, kết quả xây dựng cây phả hệ của chúng tôi là đáng tin cậy.
Các cây thuộc chi Citrus nói chung và bưởi nói riêng rất dễ xảy ra biến dị (đặc biệt là các biến dị soma) [52], do đó có thể dẫn đến sự khác nhau về đặc điểm di truyền giữa các giống mà trước đây chúng xuất phát từ cùng một nguồn gốc. Kết quả nghiên cứu của chúng tôi gần tương tự với kết quả nghiên cứu của Nguyễn Xuân Thụ và cs (2004) đã xây dựng giản đồ phả hệ của 13 giống bưởi trồng của Việt Nam nhờ vào chỉ thị RAPD. Tác giả đã sử dụng 17 mồi (Operon Technologies) để khuếch đại tạo ra 153 band DNA, trong đó có 124 band đa hình (81,05%), 29 band đơn hình (18,95%) và các band này có kích thước từ 150 bp đến 2.450 bp. Tỷ lệ các band đa hình cao chứng tỏ các giống bưởi ở Việt Nam có quan hệ di truyền xa nhau [17].
Chương 4.
KẾT LUẬN VÀ KIẾN NGHỊ
I. KẾT LUẬN
Qua quá trình nghiên cứu, chúng tôi sơ bộ rút ra các kết luận sau:
1. Tổng cộng có 298 chỉ thị RAPD được tạo ra từ 18 giống bưởi phân tích với 25 primer ngẫu nhiên, trong đó có 295 band đa hình (98,99%), tỷ lệ band đa hình trên mỗi primer là 11,8.
2. Trong số 295 band đa hình có 55 band DNA duy nhất (18,46%), đặc trưng cho 14 giống bưởi nghiên cứu.
3. Trong số 25 primer sử dụng có 5 primer vừa có khả năng khuếch đại DNA ở cả 18 giống bưởi vừa có thể tạo thành nhiều band là A02 (20 band), C02 (18 band), AT14 (12 band), C08 và N06 (10 band).
4. Hệ số đồng dạng di truyền của các giống bưởi nghiên cứu từ 0,04 đến 0,79; Các giống bưởi được chia thành 2 nhóm chính có độ tương đồng di truyền khoảng 0,05, nhóm thứ nhất (nhóm A) chỉ gồm 1 giống là bưởi Trụ lông nằm tách biệt trên giản đồ di truyền, nhóm thứ hai (nhóm B) gồm 17 giống còn lại Nhóm B bao gồm những giống có số band DNA khuếch đại lớn hơn với số band tạo thành từ 48 band (bưởi Thanh trà) đến 165 band (bưởi Đỏ). Nhóm B được chia thành 2 nhóm nhỏ là C và D với độ tương đồng di truyền 0,25; trong đó nhóm C chỉ gồm 1 giống bưởi duy nhất là bưởi Thanh trà (tương ứng với giống có số band tạo thành ít nhất); nhóm D bao gồm 16 giống bưởi còn lại với độ tương đồng di truyền xấp xỉ 0,38.
II. ĐỀ NGHỊ
1. Sử dụng kết hợp với các chỉ thị phân tử khác trong nghiên cứu nhằm xác định các chỉ thị đặc hiệu cho mỗi giống bưởi.
2. Tiếp tục nghiên cứu về đặc điểm hình thái và chất lượng quả của 18 giống bưởi nghiên cứu nhằm phục vụ cho công tác chọn giống dựa vào các chỉ thị RAPD thu được.
16 giống (bưởi Năm roi, bưởi Da xanh, bưởi Phúc Trạch, bưởi Bành, bưởi Láng, bưởi Tàu, bưởi Trẹm, bưởi Thanh Du, bưởi Đỏ, bưởi Hồng da xanh, bưởi Cốm, bưởi Trắng, bưởi Thái Lan, Thanh trà Tiên Phước, bưởi Đường lá goắn và bưởi Hải Phòng)
- nghiên cứu sâu hơn về tính chất sinh lý à chọn giống
- chỉ thị đặc trưng cho các giống
- dùng thêm các marker khác để tăng tin cậy
TÀI LIỆU THAM KHẢO
TÀI LIỆU TIẾNG VIỆT
1. 0Ai2007 Đoàn Nhân Ái, Nguyễn Thị Dung, Nguyễn Thị Hà (2007). Tuyển chọn cây đầu dòng của một số cây ăn quả có giá trị cao ở Thừa Thiên Huế. Báo cáo kết quả nghiên cứu khoa học, Sở Nông nghiệp và Phát triển Nông thôn Thừa Thiên Huế.
2. 0Binh Lê Trần Bình, Đinh Kim Xuyến (2004). Đánh giá mức độ đồng đều di truyền các dòng vải thiều (Litchi chinensis Sonn.) Thanh Hà, Hải Dương bằng kỹ thuật RAPD. TC Công nghệ sinh học 2(3): 345-358.
3. 0Binh Nguyễn Thị Thanh Bình, Hoàng Thị Hằng, Nông Văn Hải (2004). Nghiên cứu đa hình một số giống tằm dâu bằng kỹ thuật RAPD. TC Di truyền học và Ứng dụng 1: 30-35.
4. 0Cau Lý Gia Cầu (1993). Kỹ thuật trồng bưởi năng suất cao nổi tiếng của Trung Quốc: Nxb Khoa học Kỹ thuật Quảng Tây, Trung Quốc (Nguyễn Văn Tôn dịch).
5. 0Hang Nguyễn Trịnh Nhất Hằng, Yau Shiang Yang (2005). Xác định mối quan hệ di truyền một số giống đu đủ bằng phương pháp RAPD markers - đánh giá khả năng chịu liên quan giữa các giống. TC Nông nghiệp và Phát triển Nông thôn 22: 51-54.
6. 0Hanh Hồ Sỹ Hạnh, Võ Hành, Đặng Diễm Hồng (2006). Sử dụng kỹ thuật RAPD-PCR để xác định mối quan hệ di truyền của một số loài thuộc chi Calothrix (Cyanobacteria) phân lập được từ đất trồng của tỉnh Đắc Lắc. TC Sinh học 28(1): 68-74.
7. 0Hiep Nguyễn Hữu Hiệp, Trần Nhân Dũng, Đặng Thanh Sơn, Nguyễn Văn Được (2004). Đa dạng sinh học của giống cây có múi ở huyện Gò Quao, tỉnh Kiên Giang. TC Khoa học-Trường Đại học Cần Thơ 1: 111-121.
8. 0Ho Phạm Hoàng Hộ (2003). Cây cỏ Việt Nam: Nxb Trẻ, Hà Nội.
9. 0Hoa Điêu Thị Mai Hoa, Lê Trần Bình (2005). Nghiên cứu tính đa hình di truyền của 57 giống đậu xanh (Vigna radiata L.) bằng kỹ thuật RAPD. TC Công nghệ sinh học 3(1): 57-66.
10. 0Lang Nguyễn Thị Lang, Hồ Phú Yên, Trần Khắc Thi, Bùi Chí Bửu (2007). Đánh giá đa dạng di truyền của dưa leo bằng phương pháp RAPD marker. TC Nông nghiệp và Phát triển Nông thôn 1: 28-31.
11. 0Loi Đỗ Tất Lợi (2003). Những cây thuốc và vị thuốc Việt Nam: Nxb Y học, Hà Nội.
12. 0mau Chu Hoàng Mậu, Vũ Thị Thu Thuỷ, Lê Phương Dung, Ngô Thị Liêm (2007). Sự đa dạng di truyền phân tử của một số giống lạc (Arachis hypogaea L.) có khả năng chịu hạn khác nhau. TC Nông nghiệp và Phát triển Nông thôn 6: 30-33.
13. 0Nhuan Vũ Thị Nhuận, Trần Nhân Dũng, Nguyễn Hữu Hiệp, Trần Phước Đường (2005). Đa dạng di truyền bưởi Năm Roi (Citrus grandis L.) ở xã Mỹ Hòa, huyện Bình Minh, tỉnh Vĩnh Long. Hội thảo quốc gia “Cây có múi, xoài và khóm”, Cần Thơ, Việt Nam: 92-101.
14. 0tam Nguyễn Thị Tâm, Lê Văn Sơn, Lê Trần Bình (2003). Ứng dụng kỹ thuật phân tích đa hình các phân đoạn ADN được nhân bản ngẫu nhiên (RAPD) vào việc đánh giá các dòng lúa chọn lọc từ mô sẹo chịu nhiệt độ cao. Những vấn đề nghiên cứu cơ bản trong Khoa học Sự sống: Báo cáo khoa học hội nghị toàn quốc lần thứ hai, nghiên cứu cơ bản trong sinh học, nông nghiệp, y học. NXB Khoa học và Kỹ thuật, Hà Nội: 1003-1007.
15. 0Tam Nguyễn Thị Tâm, Nguyễn Thị Thu Hoài, Chu Hoàng Mậu (2005). Nghiên cứu tính đa dạng của một số giống lúa cạn địa phương bằng kỹ thuật PCR-RAPD. TC Nông nghiệp và Phát triển Nông thôn 19: 18-22.
16. 0Tho Trần Đăng Thổ, Lý Gia Cầu (1996). Kỹ thuật trồng bưởi Sa Điền: Nxb Quảng Tây, Trung Quốc (Trần Thế Tục dịch).
17. 0Thu Nguyễn Xuân Thụ, Nguyễn Hoàng Tỉnh, Lê Trần Vinh (2004). Xây dựng cây phát sinh của một số giống bưởi trồng của Việt Nam bằng chỉ thị RAPDs. Những vấn đề nghiên cứu cơ bản trong khoa học sự sống, Nxb Khoa học và Kỹ Thuật, Hà Nội: 253-256.
18. Abkenar AA, Isshiki S (2003). Molecular characterization and genetic diversity among Japanese acid citrus (Citrus spp.) based on RAPD markers. Journal of Horticultural Science & Biotechnology 78(1): 108-112.
19. Abkenar AA, Isshiki S, Tashiro Y (2004). Phylogenetic relationships in the “true citrus fruit trees” revealed by PCR-RFLP analysis of cpDNA. Scientia Horticulturae 102: 233-242.
20. Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza B (2009). High-quality plant DNA extraction for PCR: an easy approach. J Appl Genet 50(2): 105-107.
21. Andrade-Rodriguez M, Villegas-Monter A, Carrillo-Castaneda G (2004). Polyembryony and identification of Volkamerian lemon zygotic and nucellar seedlings using RAPD. Pesq. Agropec. Bras. 39: 551-559.
22. Bastianel M, Dornelles ALC, Machado MA, Wickert E, Maraschin SF, Coletta Filho HD, Schäfer G (2001). Characterization of Citrus genotypes (Citrus spp.) using RAPDs markers. Brasil Ciência Rural 31(5): 763-768.
23. Bastianel M, Schwarz SF, Colleta Filho HD, Lin LL, Machado MA, Koller OC (1998). Identification of zygotic and nucellar tangerine seedlings (Citrus spp.) using RAPD. Genet Mol Biol 21: 123-127.
24. Beedanagari SR, Sue KD, Bruce WW, Patrick JC (2005). A first linkage map of pecan cultivars based on RAPD and AFLP markers. Theor. Appl. Genet. 110: 1127-1137.
25. Bhattacharya S, Dey T, Bandopadhyay TK, Ghosh PD (2008). Genetic polymorphism analysis of somatic embryo-derived plantlets of Cymbopogon flexuosus through RAPD assay. Plant Biotechnol Rep 2: 245-252.
26. Cai Q, Guy L, Moore GA (1994). Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor. Appl. Genet. 89: 606- 614.
27. Capparelli R, Viscardi M, Amoroso MG, Blaiotta G, Bianco M (2004). Inter-simple sequence repeat markers and flow cytometry for the characterization of closely related Citrus limon germplasms. Biotechnology Letters 26: 1295-1299.
28. Cevík MF, Moore GA (2007). Construction of a genetic linkage map of Citrus with Random Amplified Polymorphic DNA (RAPD) markers using a progeny population from a complex intergeneric cross. Turkey J Bot 31: 79-86.
29. Chadha S, Gopalakrishna T (2005). Genetic diversity of Indian isolates ofrice blast pathogen (Magnaporthe grisea) using molecular markers. Current Science: 1466-1469.
30. Cheng L, Gao QK, Chen DM, Xu CJ (2005). The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources [(Camellia sinensis (L.) O. Kuntze] preserved in a tea germplasm repository. Biodivers. Conserv. 14: 1433-1444.
31. Coletta Filho HD, Machado MA, Targon MLPN, Moreira MCPQDG, Pompeu JJ (1998). Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD Markers. Euphytica 102: 133-139.
32. Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002). Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126(2): 169-176.
33. De Pasquale F, Siragusa M, Abbate L, Tusa N, De Pasquale C, Alonzo G (2006). Characterization of five sour orange clones through molecular markers and leaf essential oils analysis. Scientia Horticulturae 109: 54–59.
34. Dehesdtani A, Kazemitabar SK, Rahimian H (2007). Assessment of genetic diversity of navel sweet orange cultivars grown in Mazandaran province using RAPD markers. Asian Journal of Plant Sciences 6(7): 1119-1124.
35. Elisiario PJ, Justo EM, Leitão JM (1999). Identification of mandarin hybrids by isozyme and RAPD analysis. Sci Horti 81: 287-299.
36. Gmitter J, Fred G, Soneji JR, Rao MN (2009). Citrus breeding. Breeding Plantation Tree Crops: Temperate Species: 105-134.
37. Golein B, Koltunow AM, Talaie A, Zamani Z, Ebadi A (2005). Isolation and characterization of microsatellites loci in the lemon (Citrus limon). Molecular Ecology Notes 5: 253-255.
38. Golein B, Talaie A, Zamani Z, Ebadi A, Behjatnia A (2005). Assessment of genetic variability in some Iranian sweet oranges (Citrus sinensis [L.] Osbeck) and mandarins (Citrus reticulata Blanco) using SSR markers. Int. J. Agri. Biol. 2: 167-170.
39. Handa T, Ishizawa Y, Oogaki C (1986). Phylogenetic study of fraction I protein in the genus Citrus and its close related genera. Jpn. J. Genet. 61: 15-24.
40. Hvarleva T, Kapari-Isaia T, Papayiannis L, Atanassov A, Hadjinicoli A, Kyriakou A (2008). Characterization of Citrus cultivars and clones in Cyprus through Microsatellite and RAPD Analysis. Biotechnol Biotechnol Eq 22(3): 787-794.
41. Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H (2006). Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Scientia Horticulturae 107: 254-258.
42. Jaccard A (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise de Sciences Naturelles 44: 223-270.
43. Jain PK, Saini ML, Pathak H, Gupta VK (2007). Analysis of genetic variation in different banana (Musa pecies) variety using random amplified polymorphic DNAs (RAPDs). African Journal of Biotechnology 6(17): 1987-1989.
44. Jannati M, Fotouhi R, Abad AP, Salehi Z (2009). Genetic diversity analysis of Iranian Citrus varieties using micro satellite (SSR) based markers. Journal of Horticulture and Forestry 1(7): 120-125.
45. JinPing X, LiGeng C, Ming X, HaiLin L, WeiQi Y (2009). Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci Hortic: 135-139.
46. Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M (2004). Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in Citrus fruit. Plant. Physiol. 134: 824-837.
47. Li F, Gan S, Weng Q, Zhao X, Huang S, Li M, Chen S, Wang Q, Shi F (2008). RAPD and morphological diversity among four populations of the tropical tree species Paramichelia baillonii (Pierre) Hu in China. Forest Ecology and Management 255: 1793-1801.
48. Liu Y, Liu DC, Wu B, Sun ZH (2006). Genetic diversity of pummelo (Citrus grandis Osbeck) and its relatives based on simple sequence repeat markers. Chinese J. Agri. Biotechnol. 3(2): 119-126.
49. Machado MA, Coletta Filho HD, Targon MLPN, Pompeu JJ (1996). Genetic relationship of Mediterranean mandarins (Citrus deliciosa Tenore) using RAPD markers. Euphytica 92(3): 321-326.
50. Manthey JA, Guthrie N, Grohmann K (2001). Biological properties of Citrus flavonoids pertaining to cancer and inflammation. Current medicinal chemistry 8: 135-153.
51. Mariniello L, Sommella MG, Cozzolino A, Pierro PD, Ercolini D, Porta R (2004). Identification of campania Citrus Limon L. by random amplified polymorphic DNA markers. Food. Biotechnol. 18(3): 289-297.
52. Moore GA (2001). Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends. Genet. 17(9): 536-540.
53. Nhan NT, Shimizu T, Hirohisa N, Omura M, Chau NM (2003). RAPD markers: Application to varietal identification and analysis of genetic relationships among Citrus varieties/species in Vietnam. The 2003 Annual Workshop of JIRCAS (Section B: Fruits Production), Can Tho, Viet Nam.
54. Orbović V, Calović M, Viloria Z, Nielsen B, Gmitter FGJ, Castle WS, Grosser JW (2008). Analysis of genetic variability in various tissue culture-derived lemon plant populations using RAPD and flow cytometry. Euphytica 161: 329-335.
55. Paudyal KP, Haq N (2007). Variation of pomelo (Citrus grandis (L.) Osbeck) in Nepal and participatory selection of strains for further improvement. Agroforestry system 72(3): 195-204.
56. Pichaiyongvongdee S, Haruenkit R (2009). Investigation of limonoids, flavanones, total polyphenol content and antioxidant activity in seven Thai pummel cultivars. Kasetsart J. (Nat. sci) 43: 458-466.
57. Rao MN, Soneji JR, Chen C, Huang S, Gmitter FGJ (2008). Characterization of zygotic and nucellar seedlings from sour orange-like Citrus rootstock candidates using RAPD and EST-SSR markers. Tree. Genet. Genom. 4: 113-124.
58. Roose ML, Close TM (2008). Genomics of Citrus, a major fruit crop of tropical and subtropical regions. Pages 187-201. Genomics of Tropical Crop Plants, Springer.
59. Santos JRP, Teixeira MA, Cares JE, Faleiro FG, Costa DC (2010). Contrastant banana accessions for resistance to the burrowing nematode, based on molecular markers RAPD. Euphytica 172: 13-20.
60. Shaaban EA, Abd-EL-Aal SKH, Zaied NS, Rizkalla AA (2006). Assessment of genetic variability on some orange accessions using RAPD-DNA markers. Res. J. Agri. Biol. Sci. 2(6): 564-570.
61. Shahsavar AR, Izadpanah K, Tafazoli E, Sayed Tabatabaei BE (2007). Characterization of citrus germplasm including unknown variants by inter-simple sequence repeat (ISSR) markers. Scientia Horticulturae 112: 310-314.
62. Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen O (2009). Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Scientia Horticulturae 121: 306-312.
63. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531-6535.
64. Yi HL, Deng XX (2006). RAPD-based genetic analysis of offsprings from the sexual cross using allotetraploid Citrus somatic hybrid as pollen parent. Science in China Series C: Life Sciences 50(3): 367-378.
65. Zambrano AY, Demey JR, Gonzalez V (2003). In vitro selection of a glyphosate-tolerant sugarcane cellular line. Plant. Mol. Biol. Rep. 21: 365-373.
Các file đính kèm theo tài liệu này:
- Tailieu.Sharingvn.NetNghiamp234n c7913u 273a 2737841ng di truy7873n c7911a m7897.doc