Tài liệu Đề tài Khả năng giữ nước của thịt: ĐẠI HỌC QUỐC GIA TP.HCM
TRƯỜNG ĐH BÁCH KHOA
KHOA KỸ THUẬT HÓA HỌC
BỘ MÔN CNCB THỊT – THỦY SẢN
****
Báo cáo đề tài:
Khả năng giữ nước của thịt
GVHD: ThS Nguyễn Thị Hiền
SVTH: HC07BS
Niên khóa: 2010-201
Chương I: Giới Thiệu
Khả năng giữ nước có giá trị rất lớn trong ngành chế biến thịt, mang lại hàng triệu đô la một năm. Thịt sau giết mổ ở giai đoạn đầu gồm tốc độ và pham vi sụt giảm pH; sự phân giải protein; và sự oxy hóa protein là chìa khóa gây ảnh hưởng đến khả năng giữ lại nước của thịt. Nước trong cơ (muscle) bị bẫy trong cấu trúc của tế bào, bao gồm các khoảng không trong và ngoài sợi cơ (intra- and extramyofibrillar spaces); do đó, thay đổi cấu trúc nội bào là chìa khóa ảnh hưởng đến khả năng giữ nước của các tế bào cơ (muscle cells). Trong quá trình co cứng, khoảng không gian dành cho nước được giữ trong các tơ cơ (myofibrils) có thể bị thải ra ngoài sơi cơ (extramyofibrillar spaces), nơi dễ dàng rĩ nước. Sự co ở các tơ cơ xảy ra trong suốt giai đoạn co cứng có thể...
19 trang |
Chia sẻ: hunglv | Lượt xem: 1280 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề tài Khả năng giữ nước của thịt, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC QUỐC GIA TP.HCM
TRƯỜNG ĐH BÁCH KHOA
KHOA KỸ THUẬT HÓA HỌC
BỘ MÔN CNCB THỊT – THỦY SẢN
****
Báo cáo đề tài:
Khả năng giữ nước của thịt
GVHD: ThS Nguyễn Thị Hiền
SVTH: HC07BS
Niên khóa: 2010-201
Chương I: Giới Thiệu
Khả năng giữ nước có giá trị rất lớn trong ngành chế biến thịt, mang lại hàng triệu đô la một năm. Thịt sau giết mổ ở giai đoạn đầu gồm tốc độ và pham vi sụt giảm pH; sự phân giải protein; và sự oxy hóa protein là chìa khóa gây ảnh hưởng đến khả năng giữ lại nước của thịt. Nước trong cơ (muscle) bị bẫy trong cấu trúc của tế bào, bao gồm các khoảng không trong và ngoài sợi cơ (intra- and extramyofibrillar spaces); do đó, thay đổi cấu trúc nội bào là chìa khóa ảnh hưởng đến khả năng giữ nước của các tế bào cơ (muscle cells). Trong quá trình co cứng, khoảng không gian dành cho nước được giữ trong các tơ cơ (myofibrils) có thể bị thải ra ngoài sơi cơ (extramyofibrillar spaces), nơi dễ dàng rĩ nước. Sự co ở các tơ cơ xảy ra trong suốt giai đoạn co cứng có thể được truyền đến toàn bộ tế bào, nếu là các protein mà liên kết các tơ cơ với nhau và các tơ cơ với màng tế bào (như là desmin) đều không bị giảm. Sự giảm của protein cytoskeletal bị giới hạn có thể làm tăng sự co rút của toàn bộ tế bào cơ, cuối cùng thì chuyển sang rĩ dịch. Sự giảm của protein cytoskeletal chìa khóa bởi hệ enzyme calpain proteinase có một vai trò trong việc xác định khả năng giữ nước. Vậy các chìa khóa làm thay đổi cấu trúc cơ đều có ảnh hưởng đến khả năng giữ nước của thịt.
Chương II: Tổng quan nhân tố nội sinh ảnh hưởng đến khả năng giữ nước của thịt
Cấu tạu cơ xương
Cơ xương (còn gọi là cơ vân) là một trong ba loại cơ có trong cơ thể con người và nhiều động vật (hai loại kia là cơ trơn và cơ tim). Hầu hết các cơ xương, như tên gọi của nó chỉ ra, được gắn với cấu trúc xương và khi nó co giãn thì nó sẽ tạo ra các đáp ứng tương ứng cho việc chuyển động của xương. Quá trình co giãn của cơ xương được kích hoạt bởi các xung trong các nơron vận động gửi tới cơ, dưới quá trình tự điều khiển.
Cấu trúc: Cơ xương gồm nhiều bó sợi cơ xếp song song dọc theo chiều dài của cơ. Mỗi sợi cơ có một tế bào rất dài (từ 10 đến 40 mm), đường kính từ 10 đến 80 micromet, có nhiều nhân, được bao bọc bởi màng sợi cơ (sarcolemma). Cơ tương chứa nhiều tơ cơ (myofibril) và các bào quan khác. Mỗi sợi cơ được điều khiển bởi một đầu cuối dây thần kinh duy nhất nằm ở giữa sợi cơ.
Hình1: cấu tạo cơ xương
Hình 2: cấu tạo cơ xương
Vị trí của nước trong cơ
Trong cơ chứa khoảng 75% là nước. Các thành phần khác là protein (khoảng 20 %), lipid hay chất béo (khoảng 5 %), carbohydrate (khoảng 1%), vitamin và khoáng (1%).
Hình 3: Thành phần nước trong cơ
Phần lớn nước trong cơ được giữ trong cấu trúc của cơ và tế bào cơ. Riêng trong tế bào cơ, nước được tìm thấy trong các tơ cơ, giữa các tơ cơ, và giữa tơ cơ và màng tế bào, giữa các tế bào cơ và giữa các bó cơ.
Nước là một phân tử lưỡng cực và có thể bị hút vào các phân tử có mang điện như protein.
Hình 4: Nước bị hút do điện tích của protein
Một số nước trong tế bào cơ liên kết rất chặt với protein gọi là nước liên kết, thay đổi rất ít khi cơ co cứng. Nước liên kết chiếm một phần rất nhỏ trong toàn bộ nước của cơ.
Các phân tử nước tự do trong cơ và trong thịt được giữ do hiệu ứng không gian hay bị hút vào nước liên kết. Phần nước này được giữ trong cấu trúc của cơ nhưng không liên kết với các protein. Trong mô sau giết mổ giai đoạn đầu, nước tự do chưa thoát ra khỏi mô, nước tự do có thể bị loại bằng cách sấy khô, và có thể chuyển thành đá nếu đông lạnh. Nước bị nhốt chịu tác động bởi quá trình co cứng và sự chuyển đổi cơ thành thịt. Ngoài thay đổi cấu trúc tế bào cơ và việc giảm pH thì nước tự do cũng có thể bị thất thoát khi rửa (purge). Các lực yếu ở bề mặt có vai trò quan trọng trong giữ nước tự do trong thịt. Nước tự do thì không bị thất thoát ở giai đoạn trước co cứng, nhưng có thể bị thất thoát khi điều kiện thay đổi mà cho phép nước bị nhốt đi ra khỏi cấu trúc.
Phần lớn nước mà bị tác động bởi giai đoạn chuyển đổi cơ thành thịt là loại nước bị nhốt. Giữ càng nhiều loại nước này trong thịt là mục tiêu của nhiều quá trình. Vài nhân tố có thể ảnh hưởng đến khả năng giữ nước là sự lôi kéo của điện tích trong các protein sợi cơ và cấu trúc của tế bào cơ và thành phần của tế bào cơ (tơ cơ, cytoskeletal linkages và màng ) cũng như số lượng không gian ngoại bào trong cơ.
Nhân tố vật lý, hóa sinh trong cơ ảnh hưởng đến khả năng giữ nước
Tác động của điện tích (Net charge effect)
Trong suốt quá trình chuyển đổi cơ thành thịt, acid lactic hình thành trong mô làm giảm pH của thịt. Một khi pH đạt đến điểm đẳng điện pI của protein chính, chủ yếu là myosin (pI 5.4), điện tích của protein là 0. Nhóm mang điện âm và dương trong protein bị hút lẫn nhau, do đó sẽ giảm bớt một lượng nước bị hút và giữ lại do điện tích của protein. Ngoài ra, từ khi điện tích bị giảm, khi điện tích của protein tiến gần 0, lực đẩy trong các tơ cơ giảm cho phép chúng tập hợp lại gần cùng nhau hơn. Kết quả làm giảm không gian trong các tơ cơ. Sự biến tính một phần của đầu myosin tại pH thấp (nhiệt độ vẫn còn cao) cũng gây co trong khoảng lưới không gian sợi cơ.
Hình 5: Chất lượng thịt heo được đo pH và sự rỉ nước sau 30 h giết mổ.
Hình 6: Ảnh hưởng pH lên khả năng giữ nước
Nhân tố thuộc về gen (Genetic factors)
Gen halothane là một ví dụ của điều kiện có thể tạo ra thịt PSE . pH giảm nhanh và pH cuối thấp đều liên quan đến khả năng giữ nước thấp và mất nước khi rửa (high purge). Hạ pH nhanh làm cho pH cuối hay gần cuối thấp trong khi cơ vẫn còn ấm gây ra sự biến tính (mất chức năng và khả năng liên kết nước) của nhiều proein, trong đó có cả nước liên kết. Hầu hết việc làm sạch và rĩ nước thường thấy trong thịt PSE từ heo mang đột biến trong thể nhận ryanodine / kênh phóng thích calcium (gen halothane) trong sarcoplasmic reticulum. Sarcoplasmic reticulum tích trữ Ca và bao quanh các bó của protein có thể co lại. Đột biến này làm kênh này suy trong kiểm soát calcium gây co nhanh và tăng tốc độ chuyển hóa trong cơ và tốc độ giảm pH nhanh . Đột biến cá biệt trong gen halothane có thể được nhận ra ngay từ trong kho. Do đã làm kiểm tra đối với loại đột biến này, nền công nghiệp Mỹ đã loại ra gen này trong hầu hết các giống thương
mại.
Hình 7: Cấu trúc vi thể của tế bào cơ cho thấy mối liên hệ chặt chẽ giữa sarcoplasmic reticulum và các tơ
Hình 8: Một mô hình mở kênh Ca do tiềm năng hoạt động T ống của sợi cơ xương.
Hình 9: Ca2+ chuyển giao vào trong Cardiomyocytes
Các nhân tố khác có thể tạo ra thịt PSE. Trước khi thu hoạch, stress ngắn hạn trong con vật có thể thúc đẩy nhanh chuyển hóa đủ để sau giết mổ trong cơ vẫn bị thúc đẩy, gây ra giảm pH nhanh hơn so với con vật không bị stress.
Trạng thái chuyển hóa và điều kiện đang tồn tại của cơ thường nhằm vào phạm vi giảm pH trong cơ sau giết mổ. Nhiều nghiên cứu về tác dụng của việc xử lý để giảm lượng glycogen trong cơ để trong cơ tích tụ lượng lactate nhỏ nhất sau giết mổ. Nhân tố thuộc về gen tác động đến chuyển hóa cơ bản có tiềm năng tác động đến tích lũy lactate và phạm vi giảm pH. Milan và cộng sự (2000) đã khám phá ra gen thay thế không di truyền, biểu hiện cho protein kinase monophosphate-activated -subunit (PRKAG3), đã giải thích đột biến trội (biểu hiện RN-) được cho tạo ra những khác biệt lớn trong chất lượng thịt trong giống heo Hampshire. Sự thay thế (R200Q) trong gen PRKAG3 làm tăng 70% lượng glycogen trong heo có RN- hợp tử và dị hợp tử. Tăng lượng glycogen trực tiếp làm lactate tăng cao hơn trong cơ sau giết mổ, pH cuối thấp hơn và khả năng giữ nước sẽ kém hơn trong thịt heo tươi.
Gen PRKAG3 mã hóa cho đồng vị của cấu trúc điều hòa trong adenosine monophosphate (AMP) ở động vật có vú, activated protein kinase (AMPK). Khi bắt phải chịu stress về dinh dưỡng hay môi trường sống,thì tỉ lệ AMP/ATP của tế bào eukaryote sẽ tăng, gây ra “AMPK cascade”, kích thích tế bào bảo tồn năng lượng. Chức năng chính xác của phân tử điều khiển của AMPK vẫn còn chưa được biết rõ, tuy nhiên, cả hai được biết là có vai trò quan trọng cho hoạt động của kinase. Phân tử điều hòa cũng có thể liên quan đến vị trí liên kết AMP trong phức dị hợp AMPK. Ba đột biến sai nghĩa (T30N, G52R, I199V) trong gen PRKAG3 của heo liên quan đến pH cao hơn và màu thịt sậm hơn.
Tác động của không gian (Steric effects)
Tơ cơ chiếm tỉ lệ lớn trong tế bào cơ (82-87% thể tích tế bào cơ). Hầu hết nước (khoảng 85%) bên trong tế bào được giữ trong tơ cơ. Nhiều nước được giữ bởi lực mao dẫn xuất hiện từ cách bố trí các sợi dày và mỏng trong tơ cơ. Trong cơ sống, các đốt cơ còn isovolumetric trong suốt quá trình co và giãn ra. Vậy trong cơ sống, lượng nước trong cấu trúc sợi nhỏ của tế bào sẽ không cần thiết thay đổi. Tuy nhiên, vị trí của nước này có thể bị tác động bởi thay đổi thể tích khi cơ co. Khi cơ bắt đầu đi vào giai đoạn co cứng, cầu bắt ngang từ sợi mỏng qua sợi dày giảm, làm giảm không gian dành cho nước. Sự giảm không gian trong các sợi nhỏ có thể ép sarcoplasmic fluid từ giữa các sợi cơ đến không gian các sợi bên ngoài.
Hình 10: Tác động của không gian trong tơ cơ
Trong giai đoạn co cứng, đường kính tế bào cơ giảm và sự truyền của phần co từ các tơ cơ đến toàn bộ tế bào. Ngoài ra, trong suốt quá trình co cứng, các khúc cơ có thể thu ngắn lại; điều này cũng làm giảm không gian dành cho nước trong tơ cơ. Vậy sự rĩ dịch có thể tăng cùng với sự giảm chiều dài của khúc cơ trong các tế bào cơ.
Trong tơ cơ, một tỉ lệ nước cao được giữ trong băng I hơn protein băng A dày đặc, cho thấy khúc cơ ngắn có liên quan đến rĩ dịch tăng lên. Khi tơ cơ thu ngắn và co cứng, khúc cơ ngắn lại, dẫn đến thể tích vùng băng I thấp hơn trong tơ cơ. Thể tích bị mất trong vùng sợi tơ này (nơi có nhiều nước cư trú), kết hợp với yếu tố pH, khiến cho phần co lại của tơ cơ có thể tống nước từ trong cấu trúc các sợi cơ ra khoảng không gian ngoài sợi cơ. Sự huy động nước từ không gian trong các sợi cơ ra đến không gian ngoài các sợi cơ là chìa khóa cung cấp nguồn cho rĩ dịch.
HÌnh 11: Cấu tạo cơ tơ
Các tơ cơ liên kết với nhau và với màng tế bào thông quan các protein. Những liên kết này, chúng giữ cho cơ sau giết mổ còn nguyên vẹn, giảm đường kính các tơ cơ sẽ truyền đến tế bào cơ. Tơ cơ co lại dẫn đến sự co khít của toàn bộ tế bào cơ, do đó việc tạo kênh giữa các tế bào và giữa các bó tế bào ép dịch ra ngoài. Khoảng không gian ngoại bào xung quanh các sợi cơ liên tục tăng lên đến 24 h sau giết mổ, nhưng khoảng trống giữa sợi cơ giảm nhẹ giữa 9 và 24 h sau giết mổ, có lẽ do dòng chảy ngoài từ các kênh chính này. Những liên kết giữa các tơ cơ liền kề và các tơ cơ với màng tế bào được tạo ra do vài loại protein (desmin, filamin, và synemin, dystrophin, talin và vinculin), gọi là costameres, vai trò là cung cấp sườn cấu trúc để gắn tơ cơ vào màng bao cơ. Nếu liên kết costameres còn nguyên vẹn trong suốt biến đổi cơ thành thịt, sự co của các tơ cơ khi cơ đi vào co cứng sẽ bị chuyển đến toàn bộ tế bào qua các liên kết protein này và sẽ làm giảm thể tích tế bào cơ. Do đó, tiến trình co cứng gây thất thoát nước không những ra khỏi tơ cơ mà còn ra khỏi khoảng không gian ngoài sợi cơ khi thể tích toàn bộ của tế bào bị co khít lại. Giảm đường kính tế bào cơ trong mô sau giết mổ, nước bị tống khỏi các tơ cơ và đổ vào không gian ngoại bào.
Hình 12: Sự thủy phân protein sau giết mổ- phá hủy protein liên kết trong tế bào tác động đến rĩ dịch
Hệ thống calpain nội sinh
Calpain: Đóng vai trò chính trong thủy phân protein cơ trong điều kiện sau giết mổ. Cơ chất protein của calpain như desmin, synemin, talin và vinculin, giúp tạo sườn trong tế bào cơ. Hệ thống calpain được tạo ra từ vài tiểu đơn vị của calcium – phụ thuộc vào protease cysteine. Hai tiểu đơn vị quan trọng nhất là -calpain và m-calpain. Sau giết mổ, sự thay đổi sâu sắc xảy ra trong tế bào cơ (như pH giảm, tăng cường lực ion). Khi cơ biến đổi sang thịt, nhiều thay đổi xảy ra, gồm: (1) năng lượng tiêu hao từ từ, (2) từ trao đổi hiếu khí sang trao đổi ki khí sinh ra lactate, làm giảm pH trong mô đến 5.4-5.8, (3) tăng cường lực ion, một phần do bất hoạt của ATP – phu thuộc vào Ca, sodium và potassium, (4) bất hoạt tế bào tăng duy trì việc giảm các điều kiện. Cả -calpain và m-calpain đều có hoạt tính yếu tại giá trị pH và cường lực ion trước giết mổ. Protein bị phân cắt dần từ 45 phút đến 6 h sau giết mổ, cho phép nước thoát khỏi không gian trong sợi cơ. Phân cắt protein, buộc tơ cơ đến màng tế bào, làm tế bào cơ co lại nhiều hơn.
Hình 13 : Mối liên quan giữa sự thủy phân desmin và % rĩ dịch trong bốn con vật khác nhau.
Calpastatin là nhân tố nội sinh ức chế -calpain và m-calpain, có tác dụng điều hòa hoạt động hệ calpain trong cơ sau giết mổ. Hoạt động của Calpastatin giải thích tỉ lệ cao mức độ biến đổi độ mềm của thịt.
HÌnh 14: Hệ thống enzyme calpastatin
Vai trò của quá trình oxy hóa protein: làm biến đổi vài amino acid và gây ra sự hình thành cầu nối disulfide. Cải hai biến đổi này đều làm giảm chức năng của protein. Vì -calpain và m-calpain đều chứa histidine và SH (cysteine) tại vị trí hoạt động của enzyme, chúng dễ bi tổn thương dẫn đến bất hoạt bởi sự oxy hóa. Ở điều kiện oxy hóa ức chế sự thủy phân protein bởi -calpain nhưng không hoàn toàn ức chế quá trình tự phân.
Các thử nghiệm cho thấy hàm lượng chất chống oxy hóa cao trong thịt có thể ảnh hưởng đến sự thủy phân protein. Rowe cùng cộng sự (2004), kết quả thí nghiệm cho thấy sự thủy phân protein giải phóng troponin-T tăng sau 2 ngày giết mổ trong miếng thịt từ con vật cho ăn mức độ Vitamin E cao 1000 IU.
Hình 15: Kết quả thí nghiệm Rowe Hình 16: Ảnh hưởng chất chống oxy hóa đến hoạt động của calpain
Vài ứng nghiên cứu khả năng giữ nước trong thịt:
Nghiên cứu tác dụng nồng độ muối đối với các tuyết:
Thay đổi ở mô cơ của cá được ướp muối trong thảo luận của nhiều tác giả dựa trên những phát hiện trong các nghiên cứu về tác dụng của muối trong cá tuyết và thịt chế biến (Hamm 1960, 1968 Borgstrom; Trinick 1983; Wilding và những người khác 1986; Honikel năm 1989; Akse và những người khác 1993). Kết luận nói chung rằng khả năng giữ nước của thịt (WHC) được tăng lên ở nồng độ muối thấp (0,5 đến 5,0%). Nồng độ muối ít hơn 0,5% cảm ứng sự co rút trong các sợi cơ để che chắn ảnh hưởng của muối và giảm lực đẩy điện tích. Ở nồng độ muối xấp xỉ gần bằng 0.1 M hoặc tại điểm đẳng điện pI của protein myosin, khoảng không gian trong tơ cơ là nhỏ nhất. Khi nồng độ muối trong khoảng từ 0,5 đến 5%, khoảng không gian trong tơ cơ gia tăng cùng với lực ion. Điều này có được do các ion muối liên kết với các protein, làm cho protein mang điện tích âm nhiều hơn, tạo lực đẩy lẫn nhau nhiều hơn, hoặc do ít cấu trúc liên kết để trương nở và một phần khử cực của các sợi cơ dày, gây ra sự phân ly của phức hợp actinomyosin (Fennema 1990). Ở nồng độ muối cao hơn trong cơ, trên 9-10%, các protein bị biến tính, gây ra co rút và mất nước của cơ (Duerr và Dyer 1952). Lực đẩy giữa các protein bị giảm và lien kết protein-protein trở nên mạnh hơn, kết quả là ít không gian hơn cho nước trong cơ và ít WHC (Tên và Trinick 1983; Honikel 1989). Việc khử nước ở nồng độ muối cao hơn gây ra kết tủa myosin (Lawrie 1998).
MUSCLE FIBER AT BIOLOGICAL SALT CONCENTRATIONS
Hình 17: Nồng độ muối thích hợp trong tơ cơ
MUSCLE FIBER IN PRESENCE OF HIGH SALT CONCENTRATION -- NOTE LATTICE EXPANSION
Hình 18: Nồng độ muối cao trong tơ cơ
Gia tăng khả năng giữ nước của thịt lợn bằng phương pháp tăng biểu hiện gen Sewp1 bằng cách cho thêm nấm men giàu selen vào chế độ ăn.[1]
Selen
Selen(Se)là một nguyên tố hóa học có số thứ tự là 34,thuộc nhóm nguyên tố phi kim,thường tồn tại ngoài tự nhiên dưới dạng rắn.(hình 19)
Hình 19:các dạng Se ngoài tự nhiên
Selen (Se) rất cần thiết cho các chức năng cơ bắp bình thường ở động vật.Chế độ ăn cho động vật thiếu hụt Se có thể gây ra các chứng loạn dưỡng cơ bắp, chẳng hạn như tạng tiết dịch ở gà ,trái tim màu dâu tằm ở lợn,bệnh cơ trắng (WMD-white muscle disease ) trong thịt cừu và bê (Rederstorff, Krol &Lescure, 2006). Mặc dù sự khác biệt trong các bệnh lý của các bệnh cơ bắp có thể một phần do sự khác biệt loài,nhưng tất cả các bệnh này đều liên quan tới stress oxy hóa (Jenkinson et al.,1987). Vượt quá hoặc thậm chí sự trao đổi chất natri selenit thích đáng có thể dẫn tới sự phát sinh ra superoxide, do đó, gây stress oxy hóa (Spallholz,1994). Các stress oxy hóa gây ra bởi thiếu hụt Se và sự trao đổi chất selenit vượt quá có thể làm giảm khả năng giữ nước của thịt (Mahan, năm 1999; Zhan, Wang, Zhao, Li & Xu, năm 2007).
Khoảng 70% -90% Se ở nấm men giàu selen (SeY) tồn tại trong các hình thức selenomethionine (SeMet)-amino acid của selenoprotein,nhân S thay thế bằng nhân Se(hình 2), (Block, Glass,Jacobsen,Tyson & Udens, 2004; Ip và cộng sự, 2000).. Các con đường trao đổi chất SeMet là khác với SS và không gây ra stress oxy hóa.(Schrauzer, 2000). Thức ăn bổ sung SeY, SeMet hoặc thức ăn hữu cơ giàu Se ở lợn, thịt cừu, hay gà có thể cải thiện giữ nước năng lực và tính ổn định oxy hoá của thịt lợn, thịt cừu, hoặc thịtgà(Choct, Naylor & Reinke, 2004; Mateo, Spallholz, Elder,Yoon & Kim, 2007, Wang, Pan, Peng, Zhao & Zhou, 2009).
Hình 20:cấu trúc selenomethionine
Hệ enzyme glutathione peroxidase (GPX),enzyme của selenopotein, gồm 5 loại: GPX tế bào (GPX1), biểu mô-cụ thể dạ dày GPX (GPX2), plasma GPX (GPX3), phospholipid hydroperoxide GPX (GPX4)và tinh trùng lien kết GPX (GPX5) (Rederstorff et al, 2006.).Trong số này GPX1 và GPX4 đã được xác định trong cơ lợn (Lei, Ross &Roneker, 1997). Mặc dù GPXs (GPX1 và / hoặc GPX4) đã được mặc nhiên công nhận là nâng cao tính ổn định oxy hóa bởi loại peroxit và giảm peoroxy hóa lipid (Dunshea, D'Souza, Pethick, Harper & Warner, năm 2005; Mateo và cộng sự, 2007;.Morrissey, Sheehy, Galvin, Kerry & Buckley, 1998), cơ chế phân tử cơ bản của hiện tượng này chưa được làm sáng tỏ. Trong số 24 selenoproteins xác định trong động vật có vú (Kryukov et al., 2003),hầu hết đã được báo cáo là có liên quan đến điều chỉnh quá trình oxy hóa khử (Rederstorffet al, 2006).. Selenoprotein W (Sel W)(hình 3), một loại protein được đặt tên theo chữ đầu tiên WMD trong động vật thiếu Se, xuất hiện cao trongcơ bắp của con cừu (Yeh, Gu, Beilstein, Forsberg & Whanger, 1997), gà (Yeh và cộng sự, 2007.), chuột (Vendeland et al., 1993), và động vật linh trưởng (Gu, Sun,Ram & Whanger, 2000). Trái ngược với các selenoproteins khác biểu hiện đạt đến mức tối đa ở mức Se đầy đủ, Sel W biểu hiện ở cơ có thể tiếp tục tăng do tiêu thụ quá nhiều Se(Vendeland, Beilstein, Yeh, ram & Whanger, 1995). Ngoài ra, đang gia tăng các bằng chứng về các hoạt động chống oxy hóa của Sel W (Daewon et al, 2004;. Jeong Kim,, Chung, Lee và Kim, 2002). Tuy nhiên,người ta không biết liệu Sepw1 và một số gen selenoprotein khác xuất hiện cao trong cơ lợn và liệu sự biểu hiện của những gen này có quan hệ với trạng thái chống oxy hóa và chất lượng thịt, vì vậy các tác giả tiến hành nghiên cứu này để tìm hiểu vấn đề.
Kết luận của nghiên cứu này là tình trạng chống oxy hóa của tế bào lợn đã được điều chỉnh bởi mức độ ăn uống chứa Se ,và bao gồm cả SeY trong chế độ lợn ăn tăng sự biểu hiện của gen Sepw1 và chất lượng thịt được cải thiện.
Hình 21:cấu trúc selenoprotein
Thí nghiệm được tiến hành trên heo nuôi trong 8 tuần ở trại chăn nuôi Tứ Xuyên,Trung Quốc rồi dùng các phân tích thống kê và kết quả về ảnh hưởng của việc bổ sung Se vào thức ăn tới chất lượng thịt như sau: (hình 4)
Không ảnh hưởng màu sắc thịt
Tăng pH
Giảm hiện tượng rỉ dịch
Hình 22:bảng kết quả sau khi dùng phương pháp thống kê để đánh giá ảnh hưởng của Se
*Kết luận: Mặc dù việc bổ sung 3,0 mg Se / kg lợn chế độ ăn uống ít có khả năng trong thực tế, điều tìm được của nghiên cứu này của các tác giả là tăng biểu hiện của gen Sepw1 góp phầnvào việc cải thiện khả năng giữ nước thịt của thịt.
Tài liệu tham khảo:
Tài liệu tiếng anh:
Elisabeth Huf-Lonergan , Steven M. Lonergan (2005). Mechanisms of water-holding capacity of meat:The role of postmortem biochemical and structural changes.
K.A. Thorarinsdottir, S. Arason, S.G. Bogason, and K. Kristbergsson, Effects of Phosphate on Yield, Quality, and Water-Holding Capacity in the processing of salted cod (Gadus morhua), Vol. 66, No. 6, 2001—Journal Of Food Science
Li, J.-G., et al., Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs fed selenium-enriched yeast. Meat Science. 87(2): p. 95-100.
Rowe,L.J.,Maddock,K.R.,Trenkle,A.,Lonergan,S.M.,&Huff-Lonergan,(2003). Effects of oxidation on beef tenderness and calpain activity.
Tài liệu internet
Từ khóa:
Enhanced water-holding capacity, salt-water holding capacity, image to show water holding capacity by salt, structure of muscle, meat quality .
Các file đính kèm theo tài liệu này:
- Kha nang giu nuoc cua thit.doc