Đề tài Đặc điểm điều khiển công suất trong hệ thống thông tin di động thế hệ ba UMTS

Tài liệu Đề tài Đặc điểm điều khiển công suất trong hệ thống thông tin di động thế hệ ba UMTS: MỤC LỤC DANH MỤC CÁC TỪ VIẾT Từ viết tắt Nghĩa tiếng Anh Nghĩa tiếng Việt 2G Second Generation Thế hệ thứ 2 3G Third Generation Thế hệ thứ ba 3GPP 3ird Genaration Partnership Project Đề án các đối tác thế hệ thứ ba 3GPP2 3ird Generation Patnership Project 2 Đề án đối tác thế hệ thứ ba 2 AC Admission Cotrol Điều khiển cho phép APAICH Access Preamble Acquisition Indicator Channel Kênh chỉ thị bắt tiền tố truy nhập AMPS Automatic Message Processing System Hệ thống xử lý bản tin tự động ATM Asynchronous Transfer Mode Chế độ truyền dị bộ AuC Authentication Center Trung tâm nhận thực AV Authetication Vector Vector nhận thực BER Bit Error Ratio Tỷ số bit lỗi BICC Bearer Independent Call Control Điều khiển cuộc gọi độc lập kênh mang BSC Base Station Controller Bộ điều khiển trạm gốc BTS Base Transceiver Station Trạm thu phát gốc BSIC Base Station Identity Code Mã nhận dạng trạm thu phát gốc CDMA Code Division Multiple Access Đa truy cập ch...

doc130 trang | Chia sẻ: hunglv | Lượt xem: 1423 | Lượt tải: 1download
Bạn đang xem trước 20 trang mẫu tài liệu Đề tài Đặc điểm điều khiển công suất trong hệ thống thông tin di động thế hệ ba UMTS, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
MỤC LỤC DANH MỤC CÁC TỪ VIẾT Từ viết tắt Nghĩa tiếng Anh Nghĩa tiếng Việt 2G Second Generation Thế hệ thứ 2 3G Third Generation Thế hệ thứ ba 3GPP 3ird Genaration Partnership Project Đề án các đối tác thế hệ thứ ba 3GPP2 3ird Generation Patnership Project 2 Đề án đối tác thế hệ thứ ba 2 AC Admission Cotrol Điều khiển cho phép APAICH Access Preamble Acquisition Indicator Channel Kênh chỉ thị bắt tiền tố truy nhập AMPS Automatic Message Processing System Hệ thống xử lý bản tin tự động ATM Asynchronous Transfer Mode Chế độ truyền dị bộ AuC Authentication Center Trung tâm nhận thực AV Authetication Vector Vector nhận thực BER Bit Error Ratio Tỷ số bit lỗi BICC Bearer Independent Call Control Điều khiển cuộc gọi độc lập kênh mang BSC Base Station Controller Bộ điều khiển trạm gốc BTS Base Transceiver Station Trạm thu phát gốc BSIC Base Station Identity Code Mã nhận dạng trạm thu phát gốc CDMA Code Division Multiple Access Đa truy cập chia theo mã CRNC Control RNC Điều khiển RNC CSCF Connection State Control Function Chức năng kiểm tra trạng thái kết nối CPCH Common Packet Chanel Kênh gói chung CS Circuit Switch chuyển mạch kênh CN Core Network Mạng lõi DSSPC Dynamic step-size Power Control Điều khiển công suất phân tán DPC Distributed Power Control Điều khiển công suất phân tán DRNC Drift Radio Network Controller Bộ điều khiển mạng vô tuyến trôi EDGE Enhanced Data rate for GSM Evolution. Tăng tốc độ truyền dữ liệu cho tiến triển GSM EIR Equipment dentity Register Bộ ghi nhận dạng thiết bị FACCH Fast Associated Control Channel Kênh điều khiển liên kết nhanh. FACH Forward Access Channel Kênh truy nhập đường xuống FDMA Frequence Division Multiple Access Đa truy cập phân chia theo tần số GERAN GSM EDGE Radio Access Network GSM Mạng truy nhập vô tuyến EDGE GSM Global System for Mobile Communications Hệ thống thông tin di động toàn cầu GPRS General Packet Radio Services Dịch vụ vô tuyến gói chung. GTP General Telemetry Processor Bộ xử lý đo xa mục đích chung GGSN Gateway GPRS Support Node Nút hỗ trợ GPRS cổng GMSC Gateway Mobile Services Switching Centre Tổng đài cổng các dịch vụ di động HDLA History Data Logic Analyzer Bộ phân tích dữ liệu gốc HLR Home Location Register Bộ ghi định vị thường trú HSS Home Subscriber Server Thuê bao máy chủ thường trú HO Hand Over Chuyển giao HSDPA High Speed Downlink Packet Access Truy nhập gói đường xuống tốc độ cao ITU International Telecomunication Union Liên minh viễn thông quốc tế IMT-2000 International Mobile Telecommunication 2000 Thông tin di động quốc tế 2000 IP Internet Protocol Giao thức Internet IMS IP Multimedia Subsystem Phân hệ đa phương tiện IP IMSI International Mobile Subsscriber Identity Nhận dạng thuê bao di động quốc tế IMEI International Mobile Equipment Identity Nhận dạng thiết bị di động quốc tế LA Location Area Vùng định vị MAI Multiple Access Interference Nhiễu đa truy cập MDC Macro Diversity Combiner Bộ phối hợp đa dạng vĩ mô MEGACO Media Gateway Control protocol Giao thức điều khiển cổng phương tiện truyền thông MGW Media Gateway Cổng phương tiện truyền thông MGC Media Gateway Control Function Chức năng điều khiển cổng phương tiện MS Mobile Station Trạm di động MSC Mobile Service Switching Center Trung tâm chuyển mạch các dịch vụ di động MIP Mobile IP IP di động MSISDN Mobile Station ISDN Trạm di động ISDN MRF Multimedia Resource Function Chức năng Tài nguyên Đa phương tiện MRC Maximum Ratio Combining Bộ kết hợp vô tuyến được điều chỉnh NMT Nordic Mobile Telephony Điện thoại di động Bắc Âu NTT Nippon Telephone and Telegraph Điện báo và điện thoại Nhật Bản OFDM Orthogonal Frequency Division Multiple Đa phân chia theo tần số trực giao OMC Operations and Maintenance Centre Trung tâm khai thác và bảo dưỡng PC Power Control Điều khiển công suất PS Packet Switch Chuyển mạch gói PSTN Public Switched Telephone Network Mạng điện thoại chuyển mạch công cộng PLMN Public Land Mobile Network Mạng di động công cộng mặt đất P-TMSI Packet- Temporary Mobile Subscriber Identity Gói nhận dạng thuê bao di động tạm thời PDP Packet Data Protocol Giao thức dữ liệu gói PICH Paging Indication Channel Kênh chỉ thị tìm gọi PN Project Number Số dự án QoS Quality of Service Chất lượng dịch vụ RACH Random Access Channel Kênh truy nhập ngẫu nhiên RA Routing Area Vùng định tuyến RAN Radio Access Network Mạng truy nhập vô tuyến RNC Radio Network Controller Bộ điều khiển mạng vô tuyến RTP Real Time Protocol Giao thức thời gian thực RSPC Received Signal Code Power Công suất mã tín hiệu nhận được RRC Radio Resource Control Điều khiển tài nguyên vô tuyến RNS Radio Network System Hệ thống mạng vô tuyến R-SGW Roaming Signalling Gateway Cổng báo hiệu chuyển vùng SF Spreading factor Hệ số trải phổ SGSN Serving GPRS Support Node Nút hỗ trợ GPRS phục vụ SHO Soft Handover Chuyển giao mềm SIR Signal to Interference Ratio Tỉ số tín hiệu trên nhiễu SIP Session Initiation Protocol Giao thức khởi tạo phiên SRNC Serving RNC Phục vụ bộ điều khiển mạng vô tuyến SMS Short Message Servive Dịch vụ nhắn tin SNR Signal Noise Ratio Tỷ số tín hiệu trên nhiễu TPC Transmit Power Command Điều khiển công suất phát TDMA Time Division Multiple Access Đa truy cập phân chia theo thời gian TACS Total Access Communications Systems Toàn bộ các hệ thống phương tiện truy nhập T-SGW Transport Signalling Gateway Cổng báo hiệu vận chuyển UE User Equipment Thiết bị người sử dụng UTRAN Universal Terrestrial Radio Access Network Mạng truy nhập vô tuyến mặt đất toàn cầu UTRA Universal Terrestrial Radio Access Truy nhâp vô tuyến mặt đất toàn cầu UMTS Universal Mobile Telecommunnication System Hệ thống viễn thông di động toàn cầu UICC Universal Integrated Circuit Card Thẻ mạch tích hợp toàn cầu USIM UMTS Subscriber Indentity Module Module nhận dạng thuê bao UMTS URA UTRAN Registration Area Vùng đăng kí mạng truy nhập vô tuyến mặt đất toàn cầu UL Uplink Đường lên VLR Visitor Location Register Bộ ghi định vị tạm trú VHE Virtual Home Enviroment Môi trường gia đình ảo WCDMA Wideband Code Division Multiplex Access Đa truy cập phân chia theo mã băng rộng. WLAN Wide Local Area Network Mạng diện rộng 2. DANH MỤC CÁC BẢNG Số hiệu bảng Tên bảng Trang 2.1 Phân loại các dịch vụ ở 3GWDCMA UMTS 20 3.1 Các mức công suất kênh chung đường xuống điển hình 65 3.2 Bảng tra cứu ứng dụng DSSPC 71 4.1 Quỹ đường truyền cho tham khảo cho dịch vụ thoại 12,2 Kbps 81 4.2 Quỹ đường truyền tham khảo cho dịch vụ số liệu thời gian thực 144 Kbps 82 4.3 Quỹ đường truyền tham khảo cho dịch vụ số liệu phi thoại 384 Kbps 82 3. DANH MỤC CÁC HÌNH VẼ Số hiệu hình vẽ Tên hình vẽ Trang 1.1 Khái niệm về hệ thống FDMA 4 1.2 Khái niệm về hệ thống TDMA 5 1.3 Khái niệm về hệ thống CDMA 7 1.4 Lộ trình phát triển từ thế hệ di động 1G đến 3G 9 2.1 Kiến trúc tổng quát của một mạng di động kết hợp cả CS và PS 13 2.2 Chuyển mạch kênh (CS) và chuyển mạch gói (PS) 14 2.3 Đóng bao và tháo bao cho gói IP trong quá trình truyền tunnel 16 2.4 Thiết lập kết nối tunnel trong chuyển mạch tunnel 17 2.5 Kiến trúc 3G WCDMA UMTS R3 22 2.6 Vai trò logic của SRNC và DRNC 25 2.7 Kiến trúc mạng phân bố của phát hành 3GPP R4 31 2.8 Kiến trúc mạng 3GPP R5 và R6 34 2.9 Chuyển đổi dần từ R4 sang R5 36 2.10 Kiến trúc đồng tồn tại GSM và UMTS (phát hành 3GR1.1) 38 2.11 Kiến trúc mạng RAN tích hợp phát hành 3GR2 (R2.1) 39 2.12 Kiến trúc RAN thống nhất của 3GR3.1 40 2.13 Phân chia mạng thành các vùng phục vụ của MSC/VLR và SGSN 41 2.14 Phân chia vùng phục vụ của MSC/VLR và SGSN thành các vùng định vị LA và định tuyến RA 42 2.15 Phân chia LA và RA 43 2.16 Các kiểu mẫu ô 43 2.17 Các khái niệm phân chia vùng địa lý trong 3G WCDMA UMTS 45 3.1 Công suất thu từ 2 thuê bao tại trạm gốc 47 3.2 Nguyên lý điều khiển công suất vòng kín 50 3.3a Điều khiển công suất vòng kín bù trừ fading nhanh 51-52 3.3b Điều khiển công suất vòng ngoài 53 3.4 Các thủ tục điều khiển công suất vòng trong và vòng ngoài 54 3.5 UL PC vòng trong khi chuyển giao mềm 56 3.6 Dịch công suất (PO) để cải thiện chất lượng báo hiệu đường xuống 58 3.7 Dải động điều khiển công suất đường xuống 59 3.8 DL PC vòng trong khi DHO (SHO) 60 3.9 Kiến trúc logic chức năng UL PC vòng ngoài 63 3.10 Công suất phát trên kênh S-CCPCH, PO3 và PO1 ký hiệu cho dịch 66 3.11 Dự trữ SIR đối với các chất lượng dịch vụ khác nhau 67 3.12 Lưu đồ thuật toán điều khiển công suất theo bước động DSSPC 69 3.13 Mô hình chung của DSSPC đối với điều khiển công suất đường lên 72 3.14 Lưu đồ thuật toán điều khiển công suất phân tán DPC 79 4.1 Hiển thị form giới thiệu 85 4.2 Hiển thị form nhập số liệu 86 4.3 Hiển thị form kết quả tính toán 87 4.4 Kết quả mô phỏng bằng đồ thị hình dây 88 4.5 Kết quả mô phỏng bằng đồ thị điểm 89 LỜI MỞ ĐẦU Khả năng liên lạc thông tin với những người đang di động đã tiến triển mạnh mẽ kể từ khi Guglielm Marrconi lần đầu tiên chứng minh khả năng sóng radio có thể liên lạc liên tục với các con tàu đang chạy trên eo biển Anh, đó là vào năm 1897. Kể từ khi đó các phương pháp truyền thông không dây mới và các dịch vụ đã được con người đón nhận trên toàn thế giới. Trong thế kỷ 21, thế giới đã chứng kiến sự bùng nổ của thông tin vô tuyến trong đó thông tin di động đóng vai trò rất quan trọng. Để đáp ứng các nhu cầu ngày càng tăng về số lượng lẫn chất lượng dịch vụ đặc biệt là dịch vụ truyền số liệu đa phương tiện công nghệ băng rộng đã ra đời. Với khả năng tích hợp nhiều dịch vụ, công nghệ băng rộng đã dần chiếm lĩnh thị trường viễn thông. Có nhiều chuẩn thông tin di động thế hệ ba được đề xuất, trong đó chuẩn WCDMA đã được ITU chấp nhận và hiện nay đang được triển khai ở một số khu vực. Hệ thống UMTS là sự phát triển tiếp theo của các hệ thống thông tin di động thế hệ hai sử dụng công nghệ TDMA như GSM, PDC, IS-136… UMTS sử dụng công nghệ CDMA đang là mục tiêu hướng tới của các hệ thống thông tin di động trên toàn thế giới, điều này cho phép thực hiện tiêu chuẩn hóa giao diện vô tuyến công nghệ truyền thông không dây trên toàn cầu. Điều khiển công suất trong hệ thống thông tin di động là một trong những khâu quan trọng của hệ thống, hạn chế được ảnh hưởng của hiệu ứng gần xa đến chất lượng dịch vụ thoại, dung lượng của hệ thống và khả năng chống lại fading vốn là đặc trưng của môi trường di động. Xuất phát từ những suy nghĩ như vậy nên em đã quyết định chọn đề tài: “Điều khiển công suất trong hệ thống thông tin di động thế hệ ba UMTS”. Đồ án thực hiện giới thiệu,nghiên cứu, phân tích, kỹ thuật điều khiển công suất là DSSPC và DPC nhằm tối ưu hoạt động của mạng đồng thời cải thiện chất lượng của hệ thống. Nội dung đồ án chia làm 4 chương: Chương 1: Giới thiệu các hệ thống thông tin di động. Chương 2: Tìm hiểu mạng 3G WCDMA UMTS Chương 3: Điều khiển công suất trong hệ thống thông tin di động thế hệ ba UMTS Chương 4: Tính toán và mô phỏng Vì thời gian có hạn cũng như còn hạn chế về kiến thức nên đồ án của em khó tránh khỏi thiếu sót. Em rất mong nhận được sự đóng góp ý kiến của thầy cô giáo và bạn bè. Với lòng biết ơn sâu sắc, em xin chân thành cảm ơn thầy giáo NGUYỄN ĐÌNH LUYỆN cùng các thầy cô giáo trong khoa Kỹ Thuật và Công Nghệ đã nhiệt tình hướng dẫn giúp em hoàn thành đồ án này. Em xin chân thành cảm ơn ! Quy Nhơn, tháng 6 năm 2010 CHƯƠNG 1 GIỚI THIỆU CÁC HỆ THỐNG THÔNG TIN DI ĐỘNG Giới thiệu chương Thông tin di động là một lĩnh vực rất quan trọng trong đời sống xã hội. Xã hội càng phát triển, nhu cầu về thông tin di động của con người càng tăng lên và thông tin di động càng khẳng định được sự cần thiết và tính tiện dụng của nó. Cho đến nay, hệ thống thông tin di động đã trải qua nhiều giai đoạn phát triển, từ thế hệ di động thế hệ 1 đến thế hệ 3 và thế hệ đang phát triển trên thế giới - thế hệ 4. Trong chương này sẽ trình bày khái quát về các đặc tính chung của các hệ thống thông tin di động. Hệ thống thông tin di động thế hệ 1 Hệ thống di động thế hệ 1 chỉ hổ trợ các dịch vụ thoại tương tự và sử dụng kỹ thuật điều chế tương tự để mang dữ liệu thoại của mỗi người, và sử dụng phương pháp đa truy cập phân chia theo tần số (FDMA). Hình 1.1 mô tả phương pháp đa truy cập FDMA với 5 người dùng. Hình 1.1(a) là phổ của hệ thống FDMA. Ở đây, băng thông của hệ thống được chia thành các băng có độ rộng W. Giữa các kênh kề nhau có một khoảng bảo vệ để tránh chồng phổ do sự không ổn định của tần số sóng mang. Khi một người dùng gởi yêu cầu tới BS, BS sẽ ấn định một trong các kênh chưa sử dụng và giành riêng cho người dùng đó trong suốt cuộc gọi. Tuy nhiên, ngay khi cuộc gọi kết thúc, kênh được ấn định lại cho người khác. Khi có năm người dùng xác định và duy trì cuộc gọi như hình 1.1(b), có thể ấn định kênh như trên hình 1.1(c). Hệ thống FDMA điển hình là hệ thống điện thoại di dộng tiên tiến (Advanced Mobile phone System - AMPS). Hệ thống di động thế hệ 1 sử dụng phương pháp đa truy cập đơn giản. Tuy nhiên hệ thống không thoả mãn nhu cầu ngày càng tăng của người dùng về cả dung lượng và tốc độ. Vì các khuyết điểm trên mà nguời ta đưa ra hệ thống di dộng thế hệ 2 ưu điểm hơn thế hệ 1 về cả dung lượng và các dịch vụ được cung cấp. Đặc điểm : - Mỗi MS được cấp phát đôi kênh liên lạc suốt thời gian thông tuyến. - Nhiễu giao thoa do tần số các kênh lân cận nhau là đáng kể. - BTS phải có bộ thu phát riêng làm việc với mỗi MS. Hình 1.1 Khái niệm về hệ thống FDMA: (a) Phổ tần của hệ thống FDMA; (b) Mô hình khởi đầu và duy trì cuộc gọi với 5 người dùng; (c) Phân bố kênh. 1.3 Hệ thống thông tin di động thế hệ 2 Với sự phát triển nhanh của thuê bao, hệ thống thông tin di động thế hệ 2 được đưa ra để đáp ứng kịp thời số lượng lớn các thuê bao di động dựa trên công nghệ số. Tất cả hệ thống thông tin di động thế hệ 2 đều sử dụng điều chế số. Và chúng sử dụng 2 phương pháp đa truy cập là : - Đa truy cập phân chia theo thời gian (TDMA). - Đa truy cập phân chia theo mã (CDMA). 1.3.1 Đa truy cập phân chia theo thời gian TDMA Phổ quy định cho liên lạc di động được chia thành các dải tần liên lạc, mỗi dải tần liên lạc này dùng chung cho N kênh liên lạc, mỗi kênh liên lạc là một khe thời gian trong chu kỳ một khung. Các thuê bao khác dùng chung kênh nhờ cài xen thời gian, mỗi thuê bao được cấp phát cho một khe thời gian trong cấu trúc khung. Hình 1.2 cho thấy quá trình truy cập của một hệ thống TDMA 3 kênh với 5 người dùng. Hình 1.2 Khái niệm về hệ thống TDMA: (a) Phổ tần của hệ thống TDMA; (b) Mô hình khởi đầu và duy trì cuộc gọi với 5 người dùng; (c) Phân bố kênh (khe), với giả thiết dùng TDMA 3 kênh. Hệ thống TDMA điển hình là hệ thống thông tin di động toàn cầu (Global System for Mobile - GSM). Máy điện thoại di động kỹ thuật số TDMA phức tạp hơn kỹ thuật FDMA. Hệ thống xử lý số đối với tín hiệu trong MS tương tự có khả năng xử lý không quá 106 lệnh trong một giây, còn trong MS số TDMA phải có khả năng xử lý hơn 50x106 lệnh trên giây. Đặc điểm : - Tín hiệu của thuê bao được truyền dẫn số. - Liên lạc song công mỗi hướng thuộc các dải tần liên lạc khác nhau, trong đó một băng tần được sử dụng để truyền tín hiệu từ trạm gốc đến các máy di động và một băng tần được sử dụng để truyền tuyến hiệu từ máy di động đến trạm gốc. Việc phân chia tần như vậy cho phép các máy thu và máy phát có thể hoạt động cùng một lúc mà không sợ can nhiễu nhau. - Giảm số máy thu phát ở BTS. - Giảm nhiễu giao thoa. 1.3.2 Đa truy cập phân chia theo mã CDMA Thông tin di động CDMA sử dụng kỹ thuật trải phổ cho nên nhiều người sử dụng có thể chiếm cùng kênh vô tuyến, đồng thời tiến hành các cuộc gọi mà không sợ gây nhiễu lẫn nhau. Những người sử dụng nói trên được phân biệt với nhau nhờ dùng một mã đặc trưng không trùng với bất kỳ ai. Kênh vô tuyến CDMA được dùng lại mỗi ô (cell) trong toàn mạng, và những kênh này cũng được phân biệt nhau nhờ mã trải phổ giả ngẫu nhiên (Pseudo Noise - PN). Hình 1.3 Khái niệm về hệ thống CDMA: (a) phổ tần; (b) mô hình khởi đầu và duy trì cuộc gọi với 5 người dùng; (c) phân bố kênh. Đặc điểm: - Dải tần tín hiệu rộng hàng MHz. - Sử dụng kỹ thuật trải phổ phức tạp. - Kỹ thuật trải phổ cho phép tín hiệu vô tuyến sử dụng có cường độ trường hiệu quả hơn FDMA, TDMA…. - Việc các thuê bao MS trong ô dùng chung tần số khiến cho thiết bị truyền dẫn vô tuyến đơn giản, việc thay đổi kế hoạch tần số không còn vấn đề, chuyển giao trở thành mềm, điều khiển dung lượng ô rất linh hoạt. Hệ thống thông tin di động thế hệ 3 Hệ thống thông tin di động chuyển từ thế hệ 2 sang thế hệ 3 qua một giai đoạn trung gian là thế hệ 2,5 sử dụng công nghệ TDMA trong đó kết hợp nhiều khe hoặc nhiều tần số hoặc sử dụng công nghệ CDMA trong đó có thể chồng lên phổ tần của thế hệ hai nếu không sử dụng phổ tần mới, bao gồm các mạng đã được đưa vào sử dụng như: GPRS, EDGE và CDMA2000-1x. Ở thế hệ thứ 3 này các hệ thống thông tin di động có xu thế hoà nhập thành một tiêu chuẩn duy nhất và có khả năng phục vụ ở tốc độ bit lên đến 2 Mbit/s. Để phân biệt với các hệ thống thông tin di động băng hẹp hiện nay, các hệ thống thông tin di động thế hệ 3 gọi là các hệ thống thông tin di động băng rộng. Nhiều tiêu chuẩn cho hệ thống thông tin di động thế hệ 3 IMT-2000 đã được đề xuất, trong đó 2 hệ thống W-CDMA và CDMA2000 đã được ITU chấp thuận và đưa vào hoạt động trong những năm đầu của những thập kỷ 20. Các hệ thống này đều sử dụng công nghệ CDMA, điều này cho phép thực hiện tiêu chuẩn toàn thế giới cho giao diện vô tuyến của hệ thống thông tin di động thế hệ 3. - W-CDMA (Wideband Code Division Multiple Access) là sự nâng cấp của các hệ thống thông tin di động thế hệ 2 sử dụng công nghệ TDMA như: GSM, IS-136. - CDMA2000 là sự nâng cấp của hệ thống thông tin di động thế hệ 2 sử dụng công nghệ CDMA: IS-95. Hình 1.4 Lộ trình phát triển từ thế hệ di động 1G đến 3G Yêu cầu đối với hệ thống thông tin di động thế hệ 3: Thông tin di động thế hệ thứ 3 xây dựng trên cơ sở IMT-2000 được đưa vào phục vụ từ năm 2001. Mục đích của IMT-2000 là đưa ra nhiều khả năng mới nhưng cũng đồng thời bảo đảm sự phát triển liên tục của thông tin di động thế hệ 2. - Tốc độ của thế hệ thứ ba được xác định như sau: + 384 Kb/s đối với vùng phủ sóng rộng. + 2 Mb/s đối với vùng phủ sóng địa phương. - Các tiêu chí chung để xây dựng hệ thống thông tin di động thế hệ ba (3G): + Sử dụng dải tần quy định quốc tế 2GHz như sau: Đường lên : 1885-2025 MHz. Đường xuống : 2110-2200 MHz. + Là hệ thống thông tin di động toàn cầu cho các loại hình thông tin vô tuyến: Tích hợp các mạng thông tin hữu tuyến và vô tuyến. Tương tác với mọi loại dịch vụ viễn thông. + Sử dụng các môi trường khai thác khác nhau: trong công sở, ngoài đường, trên xe, vệ tinh. + Có thể hỗ trợ các dịch vụ như: Môi trường thông tin nhà ảo (VHE: Virtual Home Environment) trên cơ sở mạng thông minh, di động cá nhân và chuyển mạng toàn cầu. Đảm bảo chuyển mạng quốc tế. Đảm bảo các dịch vụ đa phương tiện đồng thời cho thoại, số liệu chuyển mạch theo kênh và số liệu chuyển mạch theo gói. + Dễ dàng hỗ trợ các dịch vụ mới xuất hiện. 1.5 Hệ thống thông tin di động thế hệ tiếp theo Hệ thống thông tin di động thế hệ 3 sang thế hệ 4 qua giai đoạn trung gian là thế hệ 3,5 có tên là mạng truy nhập gói đường xuống tốc độ cao HSDPA. Thế hệ 4 là công nghệ truyền thông không dây thứ tư, cho phép truyền tải dữ liệu với tốc độ tối đa trong điều kiện lý tưởng lên tới 1 cho đến 1.5 Gb/giây. Công nghệ 4G được hiểu là chuẩn tương lai của các thiết bị không dây. Các nghiên cứu đầu tiên của NTT DoCoMo cho biết, điện thoại 4G có thể nhận dữ liệu với tốc độ 100 Mb/giây khi di chuyển và tới 1 Gb/giây khi đứng yên, cho phép người sử dụng có thể tải và truyền lên hình ảnh động chất lượng cao. Chuẩn 4G cho phép truyền các ứng dụng phương tiện truyền thông phổ biến nhất, góp phần tạo nên những ứng dụng mạnh mẽ cho các mạng không dây nội bộ (WLAN) và các ứng dụng khác. Thế hệ di động 4G dùng kỹ thuật truyền tải truy cập phân chia theo tần số trực giao OFDM, là kỹ thuật nhiều tín hiệu được gởi đi cùng một lúc nhưng trên những tần số khác nhau. Trong kỹ thuật OFDM, chỉ có một thiết bị truyền tín hiệu trên nhiều tần số độc lập (từ vài chục cho đến vài ngàn tần số). Thiết bị 4G sử dụng máy thu vô tuyến xác nhận bởi phần mềm SDR (Software - Defined Radio) cho phép sử dụng băng thông hiệu quả hơn bằng cách dùng đa kênh đồng thời. 1.6 Kết luận chương Chương 1 đã trình bày một cách khái quát về những nét đặc trưng cũng như sự phát triển của các hệ thống thông tin di động thế hệ 1, 2 và 3, đồng thời đã sơ lược những yêu cầu của hệ thống thông tin di động thế hệ 3. Thế hệ thứ nhất là thế hệ thông tin di động tương tự sử dụng công nghệ truy cập phân chia theo tần số (FDMA). Tiếp theo là thế hệ thứ hai sử dụng kỹ thuật số với các công nghệ đa truy cập phân chia theo thời gian (TDMA) và phân chia theo mã (CDMA). Và hiện nay là thế hệ thứ ba đang đưa vào hoạt động. Hệ thống thông tin di động thế hệ thứ ba với tên gọi IMT-2000 khẳng định được tính ưu việt của nó so với các thế hệ trước cũng như đáp ứng kịp thời các nhu cầu ngày càng tăng của người sử dụng về tốc độ bit thông tin và tính di động. Tuy chưa xác định chính xác khả năng di động và tốc độ bit cực đại nhưng dự đoán có thể đạt tốc độ 100 km/h và tốc độ bit từ 1÷10 Mbit/s. Thế hệ thứ tư có tốc độ lên tới 34 Mbit/s đang được nghiên cứu để đưa vào sử dụng.Chương tiếp theo sẽ đi tìm hiểu rõ hơn về mạng 3G WCDMA UMTS . CHƯƠNG 2 TÌM HIỂU MẠNG 3G WCDMA UMTS 2.1 Giới thiệu chung 2.1.1 Mục đích chương - Hiểu được kiến trúc tổng quát của một mạng thông tin di động 3G. - Hiểu các kiến trúc mạng 3G WCDMA UMTS: R3, R4,R5 và R6 và chiến lược chuyển dịch GSM lên 3G UMTS. 2.1.2 Các chủ đề được trình bày trong chương - Kiến trúc chung của một mạng thông tin di động 3G. - Các khái niệm về các dịch vụ chuyển mạch kênh và các dịch vụ chuyển mạch gói. - Các loại lưu lượng và các loại dịch vụ mà 3G WCDMA UMTS có thể hỗ trợ. - Kiến trúc 3G WCDMA UMTS qua các phát hành khác nhau: R3, R4, R5 và R6. - Chiến lược chuyển dịch GSM lên 3G UMTS. 2.2 Kiến trúc chung của một hệ thống thông tin di động 3G Mạng thông tin di động (TTDĐ) 3G lúc đầu sẽ là mạng kết hợp giữa các vùng chuyển mạch gói (PS) và chuyển mạch kênh (CS) để truyền số liệu gói và tiếng. Các trung tâm chuyển mạch gói sẽ là các chuyển mạch sử dụng công nghệ ATM. Trên đường phát triển đến mạng toàn IP, chuyển mạch kênh sẽ dần được thay thế bằng chuyển mạch gói. Các dịch vụ kể cả số liệu lẫn thời gian thực (như tiếng và video) cuối cùng sẽ được truyền trên cùng một môi trường IP bằng các chuyển mạch gói. Hình 2.1 dưới đây cho thấy thí dụ về một kiến trúc tổng quát của TTDĐ 3G kết hợp cả CS và PS trong mạng lõi. RAN: Radio Access Network: mạng truy nhập vô tuyến BTS: Base Transceiver Station: trạm thu phát gốc BSC: Base Station Controller: bộ điều khiển trạm gốc RNC: Rado Network Controller: bộ điều khiển trạm gốc CS: Circuit Switch: chuyển mạch kênh PS: Packet Switch: chuyển mạch gói SMS: Short Message Servive: dịch vụ nhắn tin Server: máy chủ PSTN: Public Switched Telephone Network: mạng điện thoại chuyển mạch công cộng PLMN: Public Land Mobile Network: mạng di động công cộng mặt đất Hình2.1. Kiến trúc tổng quát của một mạng di động kết hợp cả CS và PS Các miền chuyển mạch kênh (CS) và chuyển mạch gói (PS) được thể hiện bằng một nhóm các đơn vị chức năng lôgic: trong thực hiện thực tế các miền chức năng này được đặt vào các thiết bị và các nút vật lý. Chẳng hạn có thể thực hiện chức năng chuyển mạch kênh CS (MSC/GMSC) và chức năng chuyển mạch gói (SGSN/GGSN) trong một nút duy nhất để được một hệ thống tích hợp cho phép chuyển mạch và truyền dẫn các kiểu phương tiện khác nhau: từ lưu lượng tiếng đến lưu lượng số liệu dung lượng lớn. 3G UMTS (Universal Mobile Telecommunications System: Hệ thống thông tin di động toàn cầu) có thể sử dụng hai kiểu RAN. Kiểu thứ nhất sử dụng công nghệ đa truy nhập WCDMA (Wide Band Code Devision Multiple Acces: đa truy nhập phân chia theo mã băng rộng) được gọi là UTRAN (UMTS Terrestrial Radio Network: mạng truy nhập vô tuyến mặt đất của UMTS). Kiểu thứ hai sử dụng công nghệ đa truy nhập TDMA được gọi là GERAN (GSM EDGE Radio Access Network: mạng truy nhập vô tuyến dựa trên công nghệ EDGE của GSM). Đề tài chỉ xét đề cập đến công nghệ duy nhất trong đó UMTS được gọi là 3G WCDMA UMTS. 2.3 Chuyển mạch kênh (CS), chuyển mạch gói (PS), dịch vụ chuyển mạch kênh và dịch vụ chuyển mạch gói. 3G cung cấp các dịch vụ chuyển mạch kênh như tiếng, video và các dịch vụ chuyển mạch gói chủ yếu để truy nhập internet. Chuyển mạch kênh (CS: Circuit Switch) là sơ đồ chuyển mạch trong đó thiết bị chuyển mạch thực hiện các cuộc truyền tin bằng cách thiết lập kết nối chiếm một tài nguyên mạng nhất định trong toàn bộ cuộc truyền tin. Kết nối này là tạm thời, liên tục và dành riêng. Tạm thời vì nó chỉ được duy trì trong thời gian cuộc gọi. Liên tục vì nó được cung cấp liên tục một tài nguyên nhất định (băng thông hay dung lượng và công suất) trong suốt thời gian cuộc gọi. Dành riêng vì kết nối này và tài nguyên chỉ dành riêng cho cuộc gọi này. Thiết bị chuyển mạch sử dụng cho CS trong các tổng đài của TTDĐ 2G thực hiện chuyển mạch kênh trên trên cơ sở ghép kênh theo thời gian trong đó mỗi kênh có tốc độ 64 kbps và vì thế phù hợp cho việc truyền các ứng dụng làm việc tại tốc độ cố định 64 kbps (chẳng hạn tiếng được mã hoá PCM). Chuyển mạch gói (PS: Packet Switch) là sơ đồ chuyển mạch thực hiện phân chia số liệu của một kết nối thành các gói có độ dài nhất định và chuyển mạch các gói này theo thông tin về nơi nhận được gắn với từng gói và ở PS tài nguyên mạng chỉ bị chiếm dụng khi có gói cần truyền. Chuyển mạch gói cho phép nhóm tất cả các số liệu của nhiều kết nối khác nhau phụ thuộc vào nội dung, kiểu hay cấu trúc số liệu thành các gói có kích thước phù hợp và truyền chúng trên một kênh chia sẻ. Việc nhóm các số liệu cần truyền được thực hiện bằng ghép kênh thống kê với ấn định tài nguyên động. Các công nghệ sử dụng cho chuyển mạch gói có thể là Frame Relay, ATM hoặc IP. Hình 2.1. Cho thấy cấu trúc của CS và PS. Hình 2.2. Chuyển mạch kênh (CS) và chuyển mạch gói (PS). Dịch vụ chuyển mạch kênh (CS Service) là dịch vụ trong đó mỗi đầu cuối được cấp phát một kênh riêng và nó toàn quyển sử dụng tài nguyên của kênh này trong thời gian cuộc gọi tuy nhiên phải trả tiền cho toàn bộ thời gian này dù có truyền tin hay không. Dịch vụ chuyển mạch kênh có thể được thực hiện trên chuyển mạch kênh (CS) hoặc chuyển mạch gói (PS). Thông thường dịch vụ này được áp dụng cho các dịch vụ thời gian thực (thoại). Dịch vụ chuyển mạch gói (PS Service) là dịch vụ trong đó nhiều đầu cuối cùng chia sẻ một kênh và mỗi đầu cuối chỉ chiếm dụng tài nguyên của kênh này khi có thông tin cần truyền và nó chỉ phải trả tiền theo lượng tin được truyền trên kênh. Dịch vụ chuyển mạch gói chỉ có thể được thực hiện trên chuyển mạch gói (PS). Dịch vụ này rất phù hợp cho các dịch vụ phi thời gian thực (truyền số liệu), tuy nhiên nhờ sự phát triển của công nghệ dịch vụ này cũng được áp dụng cho các dịch vụ thời gian thực (VoIP). Chuyển mạch gói có thể thực hiện trên cơ sở ATM hoặc IP. ATM (Asynchronous Transfer Mode: chế độ truyền dị bộ) là công nghệ thực hiện phân chia thông tin cần phát thành các tế bào 53 byte để truyền dẫn và chuyển mạch. Một tế bào ATM gồm 5 byte tiêu đề (có chứa thông tin định tuyến) và 48 byte tải tin (chứa số liệu của người sử dụng). Thiết bị chuyển mạch ATM cho phép chuyển mạch nhanh trên cơ sở chuyển mạch phần cứng tham chuẩn theo thông tin định tuyến tiêu đề mà không thực hiện phát hiện lỗi trong từng tế bào. Thông tin định tuyến trong tiêu đề gồm: đường dẫn ảo (VP) và kênh ảo (VC). Điều khiển kết nối bằng VC (tương ứng với kênh của người sử dụng) và VP (là một bó các VC) cho phép khai thác và quản lý có khả năng mở rộng và có độ linh hoạt cao. Thông thường VP được thiết lập trên cơ sở số liệu của hệ thống tại thời điểm xây dựng mạng. Việc sử dụng ATM trong mạng lõi cho ta nhiều cái lợi: có thể quản lý lưu lượng kết hợp với RAN, cho phép thực hiện các chức năng CS và PS trong cùng một kiến trúc và thực hiện khai thác cũng như điều khiển chất lượng liên kết. Chuyển mạch hay Router IP (Internet Protocol) cũng là một công nghệ thực hiện phân chia thông tin phát thành các gói được gọi là tải tin (Payload). Sau đó mỗi gói được gán một tiêu đề chứa các thông tin địa chỉ cần thiết cho chuyển mạch. Trong thông tin di động do vị trí của đầu cuối di động thay đổi nên cần phải có thêm tiêu đề bổ sung để định tuyến theo vị trí hiện thời của máy di động. Quá trình định tuyến này được gọi là truyền đường hầm (Tunnel). Có hai cơ chế để thực hiện điều này: MIP (Mobile IP: IP di động) và GTP (GPRS Tunnel Protocol: giao thức đường hầm GPRS). Tunnel là một đường truyền mà tại đầu vào của nó gói IP được đóng bao vào một tiêu đề mang địa chỉ nơi nhận (trong trường hợp này là địa chỉ hiện thời của máy di động) và tại đầu ra gói IP được tháo bao bằng cách loại bỏ tiêu đề bọc ngoài (hình 2.3). Hình 2.3. Đóng bao và tháo bao cho gói IP trong quá trình truyền tunnel Hình 2.4 cho thấy quá trình định tuyến tunnel (chuyển mạch tunnel) trong hệ thống 3G UMTS từ tổng đài gói cổng (GGSN) cho một máy di động (UE) khi nó chuyển từ vùng phục vụ của một tổng đài gói nội hạt (SGSN1) này sang một vùng phục vụ của một tổng đài gói nội hạt khác (SGSN2) thông qua giao thức GTP. Hình 2.4. Thiết lập kết nối tunnel trong chuyển mạch tunnel Vì 3G WCDMA UMTS được phát triển từ những năm 1999 khi mà ATM là công nghệ chuyển mạch gói còn ngự trị nên các tiêu chuẩn cũng được xây dựng trên công nghệ này. Tuy nhiên hiện nay và tương lai mạng viễn thông sẽ được xây dựng trên cơ sở internet vì thế các chuyển mạch gói sẽ là chuyển mạch hoặc router IP. 2.4 Các loại lưu lượng và dịch vụ được 3G WCDMA UMTS hỗ trợ Vì TTDĐ 3G cho phép truyền dẫn nhanh hơn, nên truy nhập Internet và lưu lượng thông tin số liệu khác sẽ phát triển nhanh. Ngoài ra TTDĐ 3G cũng được sử dụng cho các dịch vụ tiếng. Nói chung TTDĐ 3G hỗ trợ các dịch vụ tryền thông đa phương tiện. Vì thế mỗi kiểu lưu lượng cần đảm bảo một mức QoS nhất định tuỳ theo ứng dụng của dịch vụ. QoS ở W-CDMA được phân loại như sau: Loại hội thoại (Conversational, rt): Thông tin tương tác yêu cầu trễ nhỏ (thoại chẳng hạn). Loại luồng (Streaming, rt): Thông tin một chiều đòi hỏi dịch vụ luồng với trễ nhỏ (phân phối truyền hình thời gian thực chẳng hạn: Video Streaming) Loại tương tác (Interactive, nrt): Đòi hỏi trả lời trong một thời gian nhất định và tỷ lệ lỗi thấp (trình duyệt Web, truy nhập server chẳng hạn). Loại nền (Background, nrt): Đòi hỏi các dịch vụ nỗ lực nhất được thực hiện trên nền cơ sở (e-mail, tải xuống file: Video Download) Môi trường hoạt động của 3WCDMA UMTS được chia thành bốn vùng với các tốc độ bit Rb phục vụ như sau: - Vùng 1: trong nhà, ô pico, Rb £ 2Mbps - Vùng 2: thành phố, ô micro, Rb £ 384 kbps - Vùng 2: ngoại ô, ô macro, Rb £ 144 kbps - Vùng 4: Toàn cầu, Rb = 12,2 kbps Có thể tổng kết các dịch vụ do 3G WCDMA UMTS cung cấp ở bảng 2.1. Bảng 2.1. Phân loại các dịch vụ ở 3GWDCMA UMTS Kiểu Phân loại Dịch vụ chi tiết Dịch vụ di động Dịch vụ di động Di động đầu cuối/di động cá nhân/di động dịch vụ Dịch vụ thông tin định vị - Theo dõi di động/ theo dõi di động thông minh Dịch vụ âm thanh - Dịch vụ âm thanh chất lượng cao (16-64 kbps) - Dịch vụ truyền thanh AM (32-64 kbps) - Dịch vụ truyền thanh FM (64-384 kbps) Dịch vụ viễn thông Dịch vụ số liệu - Dịch vụ số liệu tốc độ trung bình (64-144 kbps) - Dịch vụ số liệu tốc độ tương đối cao (144 kbps- 2Mbps) - Dịch vụ số liệu tốc độ cao (³ 2Mbps) Dịch vụ đa phương tiện - Dịch vụ Video (384 kbps) - Dịch vụ hình chuyển động (384kbps- 2 Mbps) - Dịch vụ hình chuyển động thời gian thực (³ 2 Mbps) Dịch vụ Internet Dịch vụ Internet đơn giản Dịch vụ truy nhập Web (384 kbps-2Mbps) Dịch vụ Internet thời gian thực Dịch vụ Internet (384 kbps-2Mbps) Dịch vụ internet đa phương tiện Dịch vụ Website đa phương tiện thời gian thực (³ 2Mbps) 3G WCDMA UMTS được xây dựng theo ba phát hành chính được gọi là R3, R4, R5. Trong đó mạng lõi R3 và R4 bao gồm hai miền: miền CS (Circuit Switch: chuyển mạch kênh) và miền PS (Packet Switch: chuyển mạch gói). Việc kết hợp này phù hợp cho giai đoạn đầu khi PS chưa đáp ứng tốt các dịch vụ thời gian thực như thoại và hình ảnh. Khi này miền CS sẽ đảm nhiệm các dịch vụ thoại còn số liệu được truyền trên miền PS. R4 phát triển hơn R3 ở chỗ miền CS chuyển sang chuyển mạch mềm vì thế toàn bộ mạng truyền tải giữa các nút chuyển mạch đều trên IP. Dưới đây ta xét ba kiến trúc 3G WCDMA UMTS nói trên. 2.5 Kiến trúc 3G WCDMA UMTS R3 WCDMA UMTS R3 hỗ trợ cả kết nối chuyển mạch kênh lẫn chuyển mạch gói: đến 384 Mbps trong miền CS và 2Mbps trong miền PS. Các kết nối tốc độ cao này đảm bảo cung cấp một tập các dich vụ mới cho người sử dụng di động giống như trong các mạng điện thoại cố định và Internet. Các dịch vụ này gồm: điện thoại có hình (Hội nghị video), âm thanh chất lượng cao (CD) và tốc độ truyền cao tại đầu cuối. Một tính năng khác cũng được đưa ra cùng với GPRS là "luôn luôn kết nối" đến Internet. UMTS cũng cung cấp thông tin vị trí tốt hơn và vì thế hỗ trợ tốt hơn các dịch vụ dựa trên vị trí. Một mạng UMTS bao gồm ba phần: thiết bị di động (UE: User Equipment), mạng truy nhập vô tuyến mặt đất UMTS (UTRAN: UMTS Terrestrial Radio Network), mạng lõi (CN: Core Network) (xem hình 2.5). UE bao gồm ba thiết bị: thiết bị đầu cuối (TE), thiết bị di động (ME) và module nhận dạng thuê bao UMTS (USIM: UMTS Subscriber Identity Module). UTRAN gồm các hệ thống mạng vô tuyến (RNS: Radio Network System) và mỗi RNS bao gồm RNC (Radio Network Controller: bộ điều khiển mạng vô tuyến) và các nút B nối với nó. Mạng lõi CN bao gồm miền chuyển mạch kênh, chuyển mạch gói và HE (Home Environment: Môi trường nhà). HE bao gồm các cơ sở dữ liệu: AuC (Authentication Center: Trung tâm nhận thực), HLR (Home Location Register: Bộ ghi định vị thường trú) và EIR (Equipment dentity Register: Bộ ghi nhận dạng thiết bị). Hình 2.5. Kiến trúc 3G WCDMA UMTS R3 2.5.1 Thiết bị người sử dụng (UE) UE (User Equipment: thiết bị người sử dụng) là đầu cuối mạng UMTS của người sử dụng. Có thể nói đây là phần hệ thống có nhiều thiết bị nhất và sự phát triển của nó sẽ ảnh hưởng lớn lên các ứng dụng và các dịch vụ khả dụng. Giá thành giảm nhanh chóng sẽ tạo điều kiện cho người sử dụng mua thiết bị của UMTS. Điều này đạt được nhờ tiêu chuẩn hóa giao diện vô tuyến và cài đặt mọi trí tuệ tại các card thông minh. 2.5.1.1 Các đầu cuối (TE) Vì máy đầu cuối bây giờ không chỉ đơn thuần dành cho điện thoại mà còn cung cấp các dịch vụ số liệu mới, nên tên của nó được chuyển thành đầu cuối. Các nhà sản xuất chính đã đưa ra rất nhiều đầu cuối dựa trên các khái niệm mới, nhưng trong thực tế chỉ một số ít là được đưa vào sản xuất. Mặc dù các đầu cuối dự kiến khác nhau về kích thước và thiết kế, tất cả chúng đều có màn hình lớn và ít phím hơn so với 2G. Lý do chính là để tăng cường sử dụng đầu cuối cho nhiều dịch vụ số liệu hơn và vì thế đầu cuối trở thành tổ hợp của máy thoại di động, modem và máy tính bàn tay. Đầu cuối hỗ trợ hai giao diện. Giao diện Uu định nghĩa liên kết vô tuyến (giao diện WCDMA). Nó đảm nhiệm toàn bộ kết nối vật lý với mạng UMTS. Giao diện thứ hai là giao diện Cu giữa UMTS IC card (UICC) và đầu cuối. Giao diện này tuân theo tiêu chuẩn cho các card thông minh. Mặc dù các nhà sản xuất đầu cuối có rất nhiều ý tưởng về thiết bị, họ phải tuân theo một tập tối thiểu các định nghĩa tiêu chuẩn để các người sử dụng bằng các đầu cuối khác nhau có thể truy nhập đến một số các chức năng cơ sở theo cùng một cách. Các tiêu chuẩn này gồm: - Bàn phím (các phím vật lý hay các phím ảo trên màn hình) - Đăng ký mật khẩu mới - Thay đổi mã PIN - Giải chặn PIN/PIN2 (PUK) - Trình bày IMEI - Điều khiển cuộc gọi Các phần còn lại của giao diện sẽ dành riêng cho nhà thiết kế và người sử dụng sẽ chọn cho mình đầu cuối dựa trên hai tiêu chuẩn (nếu xu thế 2G còn kéo dài) là thiết kế và giao diện. Giao diện là kết hợp của kích cỡ và thông tin do màn hình cung cấp (màn hình nút chạm), các phím và menu. 2.5.1.2 UICC UMTS IC card là một card thông minh. Điều mà ta quan tâm đến nó là dung lượng nhớ và tốc độ bộ xử lý do nó cung cấp. Ứng dụng USIM chạy trên UICC. 2.5.1.3 USIM Trong hệ thống GSM, SIM card lưu giữ thông tin cá nhân (đăng ký thuê bao) cài cứng trên card. Điều này đã thay đổi trong UMTS, Modul nhận dạng thuê bao UMTS được cài như một ứng dụng trên UICC. Điều này cho phép lưu nhiều ứng dụng hơn và nhiều chữ ký (khóa) điện tử hơn cùng với USIM cho các mục đích khác (các mã truy nhập giao dịch ngân hàng an ninh). Ngoài ra có thể có nhiều USIM trên cùng một UICC để hỗ trợ truy nhập đến nhiều mạng. USIM chứa các hàm và số liệu cần để nhận dạng và nhận thực thuê bao trong mạng UMTS. Nó có thể lưu cả bản sao hồ sơ của thuê bao. Người sử dụng phải tự mình nhận thực đối với USIM bằng cách nhập mã PIN. Điểu này đảm bảo rằng chỉ người sử dụng đích thực mới được truy nhập mạng UMTS. Mạng sẽ chỉ cung cấp các dịch vụ cho người nào sử dụng đầu cuối dựa trên nhận dạng USIM được đăng ký. 2.5.2 Mạng truy nhập vô tuyến UMTS UTRAN (UMTS Terrestrial Radio Access Network: Mạng truy nhập vô tuyến mặt đất UMTS) là liên kết giữa người sử dụng và CN. Nó gồm các phần tử đảm bảo các cuộc truyền thông UMTS trên vô tuyến và điều khiển chúng. UTRAN được định nghĩa giữa hai giao diện. Giao diện Iu giữa UTRAN và CN, gồm hai phần: IuPS cho miền chuyển mạch gói và IuCS cho miền chuyển mạch kênh; giao diện Uu giữa UTRAN và thiết bị người sử dụng. Giữa hai giao diện này là hai nút, RNC và nút B. 2.5.2.1 RNC RNC (Radio Network Controller) chịu trách nhiệm cho một hay nhiều trạm gốc và điều khiển các tài nguyên của chúng. Đây cũng chính là điểm truy nhập dịch vụ mà UTRAN cung cấp cho CN. Nó được nối đến CN bằng hai kết nối, một cho miền chuyển mạch gói (đến GPRS) và một đến miền chuyển mạch kênh (MSC). Một nhiệm vụ quan trọng nữa của RNC là bảo vệ sự bí mật và toàn vẹn. Sau thủ tục nhận thực và thỏa thuận khóa, các khoá bảo mật và toàn vẹn được đặt vào RNC. Sau đó các khóa này được sử dụng bởi các hàm an ninh f8 và f9. RNC có nhiều chức năng logic tùy thuộc vào việc nó phục vụ nút nào. Người sử dụng được kết nối vào một RNC phục vụ (SRNC: Serving RNC). Khi người sử dụng chuyển vùng đến một RNC khác nhưng vẫn kết nối với RNC cũ, một RNC trôi (DRNC: Drift RNC) sẽ cung cấp tài nguyên vô tuyến cho người sử dụng, nhưng RNC phục vụ vẫn quản lý kết nối của người sử dụng đến CN. Vai trò logic của SRNC và DRNC được mô tả trên hình 2.6. Khi UE trong chuyển giao mềm giữa các RNC, tồn tại nhiều kết nối qua Iub và có ít nhất một kết nối qua Iur. Chỉ một trong số các RNC này (SRNC) là đảm bảo giao diện Iu kết nối với mạng lõi còn các RNC khác (DRNC) chỉ làm nhiệm vụ định tuyến thông tin giữa các Iub và Iur. Chức năng cuối cùng của RNC là RNC điều khiển (CRNC: Control RNC). Mỗi nút B có một RNC điều khiển chịu trách nhiệm cho các tài nguyên vô tuyến của nó. Hình 2.6. Vai trò logic của SRNC và DRNC 2.5.2.2 Nút B Trong UMTS trạm gốc được gọi là nút B và nhiệm vụ của nó là thực hiện kết nối vô tuyến vật lý giữa đầu cuối với nó. Nó nhận tín hiệu trên giao diện Iub từ RNC và chuyển nó vào tín hiệu vô tuyến trên giao diện Uu. Nó cũng thực hiện một số thao tác quản lý tài nguyên vô tuyến cơ sở như "điều khiển công suất vòng trong". Tính năng này để phòng ngừa vấn đề gần xa; nghĩa là nếu tất cả các đầu cuối đều phát cùng một công suất, thì các đầu cuối gần nút B nhất sẽ che lấp tín hiệu từ các đầu cuối ở xa. Nút B kiểm tra công suất thu từ các đầu cuối khác nhau và thông báo cho chúng giảm công suất hoặc tăng công suất sao cho nút B luôn thu được công suất như nhau từ tất cả các đầu cuối. 2.5.3 Mạng lõi Mạng lõi (CN) được chia thành ba phần, miền PS, miền CS và HE. Miền PS đảm bảo các dịch vụ số liệu cho người sử dụng bằng các kết nối đến Internet và các mạng số liệu khác và miền CS đảm bảo các dịch vụ điện thoại đến các mạng khác bằng các kết nối TDM. Các nút B trong CN được kết nối với nhau bằng đường trục của nhà khai thác, thường sử dụng các công nghệ mạng tốc độ cao như ATM và IP. Mạng đường trục trong miền CS sử dụng TDM còn trong miền PS sử dụng IP. 2.5.3.1 SGSN SGSN (SGSN: Serving GPRS Support Node: nút hỗ trợ GPRS phục vụ) là nút chính của miền chuyển mạch gói. Nó nối đến UTRAN thông qua giao diện IuPS và đến GGSN thông quan giao diện Gn. SGSN chịu trách nhiệm cho tất cả kết nối PS của tất cả các thuê bao. Nó lưu hai kiểu dữ liệu thuê bao: thông tin đăng ký thuê bao và thông tin vị trí thuê bao. Số liệu thuê bao lưu trong SGSN gồm: - IMSI (International Mobile Subsscriber Identity: số nhận dạng thuê bao di động quốc tế) - Các nhận dạng tạm thời gói (P-TMSI: Packet- Temporary Mobile Subscriber Identity: số nhận dạng thuê bao di động tạm thời gói) - Các địa chỉ PDP (Packet Data Protocol: Giao thức số liệu gói) Số liệu vị trí lưu trên SGSN: - Vùng định tuyến thuê bao (RA: Routing Area) - Số VLR - Các địa chỉ GGSN của từng GGSN có kết nối tích cực 2.5.3.2 GGSN GGSN (Gateway GPRS Support Node: Nút hỗ trợ GPRS cổng) là một SGSN kết nối với các mạng số liệu khác. Tất cả các cuộc truyền thông số liệu từ thuê bao đến các mạng ngoài đều qua GGSN. Cũng như SGSN, nó lưu cả hai kiểu số liệu: thông tin thuê bao và thông tin vị trí. Số liệu thuê bao lưu trong GGSN: - IMSI - Các địa chỉ PDP Số liệu vị trí lưu trong GGSN: - Địa chỉ SGSN hiện thuê bao đang nối đến GGSN nối đến Internet thông qua giao diện Gi và đến BG thông qua Gp. 2.5.3.3 BG BG (Border Gatway: Cổng biên giới) là một cổng giữa miền PS của PLMN với các mạng khác. Chức năng của nút này giống như tường lửa của Internet: để đảm bảo mạng an ninh chống lại các tấn công bên ngoài. 2.5.3.4 VLR VLR (Visitor Location Register: bộ ghi định vị tạm trú) là bản sao của HLR cho mạng phục vụ (SN: Serving Network). Dữ liệu thuê bao cần thiết để cung cấp các dịch vụ thuê bao được copy từ HLR và lưu ở đây. Cả MSC và SGSN đều có VLR nối với chúng. Số liệu sau đây được lưu trong VLR: - IMSI - MSISDN - TMSI (nếu có) - LA hiện thời của thuê bao - MSC/SGSN hiện thời mà thuê bao nối đến Ngoài ra VLR có thể lưu giữ thông tin về các dịch vụ mà thuê bao được cung cấp. Cả SGSN và MSC đều được thực hiện trên cùng một nút vật lý với VLR vì thế được gọi là VLR/SGSN và VLR/MSC. 2.5.3.5 MSC MSC thực hiện các kết nối CS giữa đầu cuối và mạng. Nó thực hiện các chức năng báo hiệu và chuyển mạch cho các thuê bao trong vùng quản lý của mình. Chức năng của MSC trong UMTS giống chức năng MSC trong GSM, nhưng nó có nhiều khả năng hơn. Các kết nối CS được thực hiện trên giao diện CS giữa UTRAN và MSC. Các MSC được nối đến các mạng ngoài qua GMSC. 2.5.3.6 GMSC GMSC có thể là một trong số các MSC. GMSC chịu trách nhiệm thực hiện các chức năng định tuyến đến vùng có MS. Khi mạng ngoài tìm cách kết nối đến PLMN của một nhà khai thác, GMSC nhận yêu cầu thiết lập kết nối và hỏi HLR về MSC hiện thời quản lý MS. 2.5.3.7 Môi trường nhà Môi trường nhà (HE: Home Environment) lưu các hồ sơ thuê bao của hãng khai thác. Nó cũng cung cấp cho các mạng phục vụ (SN: Serving Network) các thông tin về thuê bao và về cước cần thiết để nhận thực người sử dụng và tính cước cho các dịch vụ cung cấp. Tất cả các dịch vụ được cung cấp và các dịch vụ bị cấm đều được liệt kê ở đây. Bộ ghi định vị thường trú (HLR) HLR là một cơ sở dữ liệu có nhiệm vụ quản lý các thuê bao di động. Một mạng di động có thể chứa nhiều HLR tùy thuộc vào số lượng thuê bao, dung lượng của từng HLR và tổ chức bên trong mạng. Cơ sở dữ liệu này chứa IMSI (International Mobile Subsscriber Identity: số nhận dạng thuê bao di động quốc tế), ít nhất một MSISDN (Mobile Station ISDN: số thuê bao có trong danh bạ điện thoại) và ít nhất một địa chỉ PDP (Packet Data Protocol: Giao thức số liệu gói). Cả IMSI và MSISDN có thể sử dụng làm khoá để truy nhập đến các thông tin được lưu khác. Để định tuyến và tính cước các cuộc gọi, HLR còn lưu giữ thông tin về SGSN và VLR nào hiện đang chịu trách nhiệm thuê bao. Các dịch vụ khác như chuyển hướng cuộc gọi, tốc độ số liệu và thư thoại cũng có trong danh sách cùng với các hạn chế dịch vụ như các hạn chế chuyển mạng. HLR và AuC là hai nút mạng logic, nhưng thường được thực hiện trong cùng một nút vật lý. HLR lưu giữ mọi thông tin về người sử dụng và đăng ký thuê bao. Như: thông tin tính cước, các dịch vụ nào được cung cấp và các dịch vụ nào bị từ chối và thông tin chuyển hướng cuộc gọi. Nhưng thông tin quan trọng nhất là hiện VLR và SGSN nào đang phụ trách người sử dụng. Trung tâm nhận thực (AuC) AUC (Authentication Center) lưu giữ toàn bộ số liệu cần thiết để nhận thực, mật mã hóa và bảo vệ sự toàn vẹn thông tin cho người sử dụng. Nó liên kết với HLR và được thực hiện cùng với HLR trong cùng một nút vật lý. Tuy nhiên cần đảm bảo rằng AuC chỉ cung cấp thông tin về các vectơ nhận thực (AV: Authetication Vector) cho HLR. AuC lưu giữ khóa bí mật chia sẻ K cho từng thuê bao cùng với tất cả các hàm tạo khóa từ f0 đến f5. Nó tạo ra các AV, cả trong thời gian thực khi SGSN/VLR yêu cầu hay khi tải xử lý thấp, lẫn các AV dự trữ. Bộ ghi nhận dạng thiết bị (EIR) EIR (Equipment Identity Register) chịu trách nhiệm lưu các số nhận dạng thiết bị di động quốc tế (IMEI: International Mobile Equipment Identity). Đây là số nhận dạng duy nhất cho thiết bị đầu cuối. Cơ sở dữ liệu này được chia thành ba danh mục: danh mục trắng, xám và đen. Danh mục trắng chứa các số IMEI được phép truy nhập mạng. Danh mục xám chứa IMEI của các đầu cuối đang bị theo dõi còn danh mục đen chứa các số IMEI của các đầu cuối bị cấm truy nhập mạng. Khi một đầu cuối được thông báo là bị mất cắp, IMEI của nó sẽ bị đặt vào danh mục đen vì thế nó bị cấm truy nhập mạng. Danh mục này cũng có thể được sử dụng để cấm các seri máy đặc biệt không được truy nhập mạng khi chúng không hoạt động theo tiêu chuẩn. 2.5.4 Các mạng ngoài Các mạng ngoài không phải là bộ phận của hệ thống UMTS, nhưng chúng cần thiết để đảm bảo truyền thông giữa các nhà khai thác. Các mạng ngoài có thể là các mạng điện thoại như: PLMN (Public Land Mobile Network: mạng di động mặt đất công cộng), PSTN (Public Switched Telephone Network: Mạng điện thoại chuyển mạch công cộng), ISDN hay các mạng số liệu như Internet. Miền PS kết nối đến các mạng số liệu còn miền CS nối đến các mạng điện thoại. 2.5.5 Các giao diện Vai trò các các nút khác nhau của mạng chỉ được định nghĩa thông qua các giao diện khác nhau. Các giao diện này được định nghĩa chặt chẽ để các nhà sản xuất có thể kết nối các phần cứng khác nhau của họ. - Giao diện Cu. Giao diện Cu là giao diện chuẩn cho các card thông minh. Trong UE đây là nơi kết nối giữa USIM và UE - Giao diện Uu. Giao diện Uu là giao diện vô tuyến của WCDMA trong UMTS. Đây là giao diện mà qua đó UE truy nhập vào phần cố định của mạng. Giao diện này nằm giữa nút B và đầu cuối. - Giao diện Iu. Giao diện Iu kết nối UTRAN và CN. Nó gồm hai phần, IuPS cho miền chuyển mạch gói, IuCS cho miền chuyển mạch kênh. CN có thể kết nối đến nhiều UTRAN cho cả giao diện IuCS và IuPS. Nhưng một UTRAN chỉ có thể kết nối đến một điểm truy nhập CN. - Giao diện Iur. Đây là giao diện RNC-RNC. Ban đầu được thiết kế để đảm bảo chuyển giao mềm giữa các RNC, nhưng trong quá trình phát triển nhiều tính năng mới được bổ sung. Giao diện này đảm bảo bốn tính năng nổi bật sau: Di động giữa các RNC Lưu thông kênh riêng Lưu thông kênh chung Quản lý tài nguyên toàn cục - Giao diện Iub. Giao diện Iub nối nút B và RNC. Khác với GSM đây là giao diện mở. 2.6 Kiến trúc 3G WCDMA UMTS R4 Hình 2.7 cho thấy kiến trúc cơ sở của 3G UMTS R4. Sự khác nhau cơ bản giữa R3 và R4 là ở chỗ khi này mạng lõi là mạng phân bố và chuyển mạch mềm. Thay cho việc có các MSC chuyển mạch kênh truyền thống như ở kiến trúc trước, kiến trúc chuyển mạch phân bố và chuyển mạch mềm được đưa vào. Về căn bản, MSC được chia thành MSC server và cổng các phương tiện (MGW: Media Gateway). MSC chứa tất cả các phần mềm điều khiển cuộc gọi, quản lý di động có ở một MSC tiêu chuẩn. Tuy nhiên nó không chứa ma trận chuyển mạch. Ma trận chuyển mạch nằm trong MGW được MSC Server điều khiển và có thể đặt xa MSC Server. Hình 2.7. Kiến trúc mạng phân bố của phát hành 3GPP R4 Báo hiệu điều khiển các cuộc gọi chuyển mạch kênh được thực hiện giữa RNC và MSC Server. Đường truyền cho các cuộc gọi chuyển mạch kênh được thực hiện giữa RNC và MGW. Thông thường MGW nhận các cuộc gọi từ RNC và định tuyến các cuộc gọi này đến nơi nhận trên các đường trục gói. Trong nhiều trường hợp đường trục gói sử dụng Giao thức truyền tải thời gian thực (RTP: Real Time Transport Protocol) trên Giao thức Internet (IP). Từ hình 2.7 ta thấy lưu lượng số liệu gói từ RNC đi qua SGSN và từ SGSN đến GGSN trên mạng đường trục IP. Cả số liệu và tiếng đều có thể sử dụng truyền tải IP bên trong mạng lõi. Đây là mạng truyền tải hoàn toàn IP. Tại nơi mà một cuộc gọi cần chuyển đến một mạng khác, PSTN chẳng hạn, sẽ có một cổng các phương tiện khác (MGW) được điều khiển bởi MSC Server cổng (GMSC server). MGW này sẽ chuyển tiếng thoại được đóng gói thành PCM tiêu chuẩn để đưa đến PSTN. Như vậy chuyển đổi mã chỉ cần thực hiện tại điểm này. Để thí dụ, ta giả thiết rằng nếu tiếng ở giao diện vô tuyến được truyền tại tốc độ 12,2 kbps, thì tốc độ này chỉ phải chuyển vào 64 kbps ở MGW giao tiếp với PSTN. Truyền tải kiểu này cho phép tiết kiệm đáng kể độ rộng băng tần nhất là khi các MGW cách xa nhau. Giao thức điều khiển giữa MSC Server hoặc GMSC Server với MGW là giao thức ITU H.248. Giao thức này được ITU và IETF cộng tác phát triển. Nó có tên là điều khiển cổng các phương tiện (MEGACO: Media Gateway Control). Giao thức điều khiển cuộc gọi giữa MSC Server và GMSC Server có thể là một giao thức điều khiển cuộc gọi bất kỳ. 3GPP đề nghị sử dụng (không bắt buộc) giao thức Điều khiển cuộc gọi độc lập vật mang (BICC: Bearer Independent Call Control) được xây dựng trên cơ sở khuyến nghị Q.1902 của ITU. Trong nhiều trường hợp MSC Server hỗ trợ cả các chức năng của GMSC Server. Ngoài ra MGW có khả năng giao diện với cả RAN và PSTN. Khi này cuộc gọi đến hoặc từ PSTN có thể chuyển nội hạt, nhờ vậy có thể tiết kiệm đáng kể đầu tư. Để làm thí dụ ta xét trường hợp khi một RNC được đặt tại thành phố A và được điều khiển bởi một MSC đặt tại thành phố B. Giả sử thuê bao thành phố A thực hiện cuộc gọi nội hạt. Nếu không có cấu trúc phân bố, cuộc gọi cần chuyển từ thành phố A đến thành phố B (nơi có MSC) để đấu nối với thuê bao PSTN tại chính thành phố A. Với cấu trúc phân bố, cuộc gọi có thể được điều khiển tại MSC Server ở thành phố B nhưng đường truyền các phương tiện thực tế có thể vẫn ở thành phố A, nhờ vậy giảm đáng kể yêu cầu truyền dẫn và giá thành khai thác mạng. Từ hình 2.7 ta cũng thấy rằng HLR cũng có thể được gọi là Server thuê bao tại nhà (HSS: Home Subscriber Server). HSS và HLR có chức năng tương đương, ngoại trừ giao diện với HSS là giao diện trên cơ sở truyền tải gói (IP chẳng hạn) trong khi HLR sử dụng giao diện trên cơ sở báo hiệu số 7. Ngoài ra còn có các giao diện (không có trên hình vẽ) giữa SGSN với HLR/HSS và giữa GGSN với HLR/HSS. Rất nhiều giao thức được sử dụng bên trong mạng lõi là các giao thức trên cơ sở gói sử dụng hoặc IP hoặc ATM. Tuy nhiên mạng phải giao diện với các mạng truyền thống qua việc sử dụng các cổng các phương tiện. Ngoài ra mạng cũng phải giao diện với các mạng SS7 tiêu chuẩn. Giao diện này được thực hiện thông qua cổng SS7 (SS7 GW). Đây là cổng mà ở một phía nó hỗ trợ truyền tải bản tin SS7 trên đường truyền tải SS7 tiêu chuẩn, ở phía kia nó truyền tải các bản tin ứng dụng SS7 trên mạng gói (IP chẳng hạn). Các thực thể như MSC Server, GMSC Server và HSS liên lạc với cổng SS7 bằng cách sử dụng các giao thức truyền tải được thiết kế đặc biệt để mang các bản tin SS7 ở mạng IP. Bộ giao thức này được gọi là Sigtran. 2.7 Kiến trúc 3G WCDMA UMTS R5 và R6 Bước phát triển tiếp theo của UMTS là đưa ra kiến trúc mạng đa phương tiện IP (hình 2.8). Bước phát triển này thể hiện sự thay đổi toàn bộ mô hình cuộc gọi. Ở đây cả tiếng và số liệu được xử lý giống nhau trên toàn bộ đường truyền từ đầu cuối của người sử dụng đến nơi nhận cuối cùng. Có thể coi kiến trúc này là sự hội tụ toàn diện của tiếng và số liệu. Hình 2.8. Kiến trúc mạng 3GPP R5 và R6 Điểm mới của R5 và R6 là nó đưa ra một miền mới được gọi là phân hệ đa phương tiện IP (IMS: IP Multimedia Subsystem). Đây là một miền mạng IP được thiết kế để hỗ trợ các dịch vụ đa phương tiện thời gian thực IP. Từ hình 2.8 ta thấy tiếng và số liệu không cần các giao diện cách biệt; chỉ có một giao diện Iu duy nhất mang tất cả phương tiện. Trong mạng lõi giao diện này kết cuối tại SGSN và không có MGW riêng. Phân hệ đa phương tiện IP (IMS) chứa các phần tử sau: Chức năng điều khiển trạng thái kết nối (CSCF: Connection State Control Function), Chức năng tài nguyên đa phương tiện (MRF: Multimedia Resource Function), chức năng điều khiển cổng các phương tiện (MGCF: Media Gateway Control Function), Cổng báo hiệu truyền tải (T-SGW: Transport Signalling Gateway) và Cổng báo hiệu chuyển mạng (R-SGW: Roaming Signalling Gateway). Một nét quan trọng của kiến trúc toàn IP là thiết bị của người sử dụng được tăng cường rất nhiều. Nhiều phần mềm được cài đặt ở UE. Trong thực tế, UE hỗ trợ giao thức khởi đầu phiên (SIP: Session Initiation Protocol). UE trở thành một tác nhân của người sử dụng SIP. Như vậy, UE có khả năng điều khiển các dịch vụ lớn hơn trước rất nhiều. CSCF quản lý việc thiết lập, duy trì và giải phóng các phiên đa phương tiện đến và từ người sử dụng. Nó bao gồm các chức năng như: phiên dịch và định tuyến. CSCF hoạt động như một đại diện Server /hộ tịch viên. SGSN và GGSN là các phiên bản tăng cường của các nút được sử dụng ở GPRS và UMTS R3 và R4. Điểm khác nhau duy nhất là ở chỗ các nút này không chỉ hỗ trợ dịch vụ số liệu gói mà cả dịch vụ chuyển mạch kênh (tiếng chẳng hạn). Vì thế cần hỗ trợ các khả năng chất lượng dịch vụ (QoS) hoặc bên trong SGSN và GGSN hoặc ít nhất ở các Router kết nối trực tiếp với chúng. Chức năng tài nguyên đa phương tiện (MRF) là chức năng lập cầu hội nghị được sử dụng để hỗ trợ các tính năng như tổ chức cuộc gọi nhiều phía và dịch vụ hội nghị . Cổng báo hiệu truyền tải (T-SGW) là một cổng báo hiệu SS7 để đảm bảo tương tác SS7 với các mạng tiêu chuẩn ngoài như PSTN. T-SGW hỗ trợ các giao thức Sigtran. Cổng báo hiệu chuyển mạng (R-SGW) là một nút đảm bảo tương tác báo hiệu với các mạng di động hiện có sử dụng SS7 tiêu chuẩn. Trong nhiều trường hợp T-SGW và R-SGW cùng tồn tại trên cùng một nền tảng. MGW thực hiện tương tác với các mạng ngoài ở mức đường truyền đa phương tiện. MGW ở kiến trúc mạng của UMTS R5 có chức năng giống như ở R4. MGW được điều khiển bởi chức năng cổng điều khiển các phương tiện (MGCF). Giao thức điều khiển giữa các thực thể này là ITU-T H.248. MGCF cũng liên lạc với CSCF. Giao thức được chọn cho giao diện này là SIP. Tuy nhiên có thể nhiều nhà khai thác vẫn sử dụng nó kết hợp với các miền chuyển mạch kênh trong R3 và R4. Điều này cho phép chuyển đổi dần từ các phiên bản R3 và R4 sang R5. Một số các cuộc gọi thoại có thể vẫn sử dụng miền CS một số các dịch vụ khác chẳng hạn video có thể được thực hiện qua R5 IMS. Cấu hình lai ghép được thể hiện trên hình 2.9. Hình 2.9. Chuyển đổi dần từ R4 sang R5 2.8 Chiến lược dịch chuyển từ GSM sang UMTS Trong phần này ta sẽ xét chiến lược dịch chuyển từ GSM sang UMTS của hãng Alcatel. Alcatel dự kiến phát triển RAN từ GSM lên 3G UMTS theo ba phát hành: 3GR1, 3GR2 và 3GR3. Với mỗi phát hành, các sản phẩm mới và các tính năng mới được đưa ra. 2.8.1 3GR1 : Kiến trúc mạng UMTS chồng lấn Phát hành 3GP1 dựa trên phát hành của 3GPP vào tháng 3 và các đặc tả kỹ thuật vào tháng 6 năm 2000. Phát hành đầu của 3GR1 chỉ hỗ trợ UTRA-FDD và sẽ được triển khai chồng lấn lên GSM. Chiến lược dịch chuyển từ GSM sang UMTS phát hành 3GR1 được chia thành ba giai đoạn được ký hiệu là R1.1, R1.2 và R1.3 (R: Release: phát hành). Trong các phát hành này các phần cứng và các tính năng mới được đưa ra. Các nút B được gọi là MBS (Multistandard Base Station: trạm gốc đa tiêu chuẩn). Tuy nhiên MBS V1 chỉ đơn thuần là nút B, chỉ MBS V2 mới thực sự đa tiêu chuẩn và chứa các chức năng của cả nút B và BTS trong cùng một hộp máy. Tương tự RNC V2 và OMC-R V2 được đưa ra để phục vụ cho cả UMTS và GSM. Hình 2.10 cho thấy kiến trúc đồng tồn tại GSM và UMTS được phát triển trong giai đoạn triển khai UMTS ban đầu (3GR1.1). Hình 2.10. Kiến trúc đồng tồn tại GSM và UMTS (phát hành 3GR1.1) 2.8.2 3GR2 : Tích hợp các mạng UMTS và GSM Trong giai đoạn triển khai UMTS thứ hai sự tích hợp đầu tiên giữa hai mạng sẽ được thực hiện bằng cách đưa ra các thiết bị đa tiêu chuẩn như: Nút B kết hợp BTS (MBS V2) và RNC kết hợp BSC (RNC V2). Các chức năng khai thác và bảo dưỡng mạng vô tuyến cũng có thể được thực hiện chung bởi cùng một OMC-R (V2). Hình 2.11 mô tả kiến trúc mạng RAN tích hợp của giai đoạn hai. Hình 2.11. Kiến trúc mạng RAN tích hợp phát hành 3GR2 (R2.1). 2.8.3 3GR3 : Kiến trúc RAN thống nhất Trong kiến trúc RAN của phát hành này được xây dựng trên cơ sở phát hành R5 vào tháng 9 năm 2000 của 3GPP. Trong phát hành này RAN chung cho cả hệ thống UMTS và GSM. Cả UTRA-FDD và UTRA-TDD đều được hỗ trợ. Giao thức truyền tải được thống nhất cho GSM, E-GPRS và UMTS, ngoài ra có thể ATM kết hợp IP. GERAN (GSM/EDGE RAN) cũng sẽ được hỗ trợ bởi phát hành này của mạng. Kiến trúc RAN của 3GR1.3 được thể hiện trên hình 2.12. Hình 2.12. Kiến trúc RAN thống nhất của 3GR3.1 2.9 Cấu hình địa lý của hệ thống thông tin di động 3G Do tính chất di động của thuê bao di động nên mạng di động phải được tổ chức theo một cấu trúc địa lý nhất định để mạng có thể theo dõi được vị trí của thuê bao. 2.9.1 Phân chia theo vùng mạng Trong một quốc gia có thể có nhiều vùng mạng viễn thông, việc gọi vào một vùng mạng nào đó phải được thực hiện thông qua tổng đài cổng. Các vùng mạng di động 3G được đại diện bằng tổng đài cổng GMSC hoặc GGSN. Tất cả các cuộc gọi đến một mạng di động từ một mạng khác đều được định tuyến đến GMSC hoặc GGSN. Tổng đài này làm việc như một tổng đài trung kế vào cho mạng 3G. Đây là nơi thực hiện chức năng hỏi để định tuyến cuộc gọi kết cuối ở trạm di động. GMSC/GGSN cho phép hệ thống định tuyến các cuộc gọi vào từ mạng ngoài đến nơi nhận cuối cùng: các trạm di động bị gọi. 2.9.2 Phân chia theo vùng phục vụ MSC/VLR và SGSN Một mạng thông tin di động được phân chia thành nhiều vùng nhỏ hơn, mỗi vùng nhỏ này được phục vụ bởi một MSC/VLR (hình 2.13a). hay SGSN (2.13b) Ta gọi đây là vùng phục vụ của MSC/VLR hay SGSN. Hình 2.13. Phân chia mạng thành các vùng phục vụ của MSC/VLR và SGSN Để định tuyến một cuộc gọi đến một thuê bao di động, đường truyền qua mạng sẽ được nối đến MSC đang phục vụ thuê bao di động cần gọi. Ở mỗi vùng phục vụ MSC/VLR thông tin về thuê bao được ghi lại tạm thời ở VLR. Thông tin này bao gồm hai loại: Thông tin về đăng ký và các dịch vụ của thuê bao. Thông tin về vị trí của thuê bao (thuê bao đang ở vùng định vị hoặc vùng định tuyến nào). 2.9.3 Phân chia theo vùng định vị và vùng định tuyến Mỗi vùng phục vụ MSC/VLR được chia thành một số vùng định vị: LA (Location Area) (hình 2.14a). Mỗi vùng phục vụ của SGSN được chia thành các vùng định tuyến (RA: Routing Area) (2.14b). Hình 2.14. Phân chia vùng phục vụ của MSC/VLR và SGSN thành các vùng định vị (LA: Location Area) và định tuyến (RA: Routing Area) Vùng định vị (hay vùng định tuyến là một phần của vùng phục vụ MSC/VLR (hay SGSN) mà ở đó một trạm di động có thể chuyển động tự do và không cần cập nhật thông tin về vị trí cho MSC/VLR (hay SGSN) quản lý vị trí này. Có thể nói vùng định vị (hay vùng định tuyến) là vị trí cụ thể nhất của trạm di động mà mạng cần biết để định tuyến cho một cuộc gọi đến nó. Ở vùng định vị này thông báo tìm sẽ được phát quảng bá để tìm thuê bao di động bị gọi. Hệ thống có thể nhận dạng vùng định vị bằng cách sử dụng nhận dạng vùng định vị (LAI: Location Area Identity) hay nhận dạng vùng định tuyến (RAI Routing Area Identity). Vùng định vị (hay vùng định tuyến) có thể bao gồm một số ô và thuộc một hay nhiều RNC, nhưng chỉ thuộc một MSC (hay một SGSN). 2.9.4 Phân chia theo ô Vùng định vị hay vùng định tuyến được chia thành một số ô (hình 2.15). Hình 2.15. Phân chia LA và RA Ô là một vùng phủ vô tuyến được mạng nhận dạng bằng nhận dạng ô toàn cầu (CGI: Cell Global Identity). Trạm di động nhận dạng ô bằng mã nhận dạng trạm gốc (BSIC: Base Station Identity Code). Vùng phủ của các ô thường được mô phỏng bằng hình lục giác để tiện cho việc tính toán thiết kế. 2.9.5 Mẫu ô Mẫu ô có hai kiểu: vô hướng ngang (omnidirectional) và phân đoạn (sectorized). Các mẫu này được cho trên hình 2.16. Hình 2.16. Các kiểu mẫu ô Ô vô hướng ngang (hình 2.16a) nhận được từ phát xạ của một anten có búp sóng tròn trong mặt ngang (mặt phẳng song song với mặt đất) và búp sóng có hướng chúc xuống mặt đất trong mặt đứng (mặt phẳng vuông góc với mặt đất). Ô phân đoạn (hình 2.16b) là ô nhận được từ phát xạ của ba anten với hướng phát xạ cực đại lệch nhau 1200. Các anten này có búp sóng dạng nửa số 8 trong mặt ngang và trong mặt đứng búp sóng của chúng chúc xuống mặt đất. Trong một số trường hợp ô phân đoạn có thể được tạo ra từ phát xạ của nhiều hơn ba anten. Trong thực tế mẫu ô có thể rất đa dạng tùy vào địa hình cần phủ sóng. Tuy nhiên các mẫu ô như trên hình 2.16 thường được sử dụng để thiết kế cho sơ đồ phủ sóng chuẩn. 2.9.6 Tổng kết phân chia vùng địa lý trong các hệ thống thông tin di động 3G Trong các kiến trúc mạng bao gồm cả miền chuyển mạch kênh và miền chuyển mạch gói, vùng phục mạng không chỉ được phân chia thành các vùng định vị (LA) mà còn được phân chia thành các vùng định tuyến (RA: Routing Area). Các vùng định vị (LA: Location Area) là khái niệm quản lý di động của miền CS kế thừa từ mạng GSM. Các vùng định tuyến (RA: Routing Area) là các thực thể của miền PS. Mạng lõi PS sử dụng RA để tìm gọi. Nhận dạng thuê bao P-TMSI (Packet- Temporary Mobile Subsscriber Identity: nhận dạng thuê bao di động gói tạm thời) là duy nhất trong một RA. Trong mạng truy nhập vô tuyến, RA lại được chia tiếp thành các vùng đăng ký UTRAN (URA: UTRAN Registration Area). Tìm gọi khởi xướng UTRAN sử dụng URA khi kênh báo hiệu đầu cuối đã được thiết lập. URA không thể nhìn thấy được ở bên ngoài UTRAN. Quan hệ giữa các vùng được phân cấp như cho ở hình 2.17 (ô không được thể hiện). LA thuộc 3G MSC và RA thuộc 3G SGSN. URA thuộc RNC. Theo dõi vị trí theo URA và ô trong UTRAN được thực hiện khi có kết nối RRC (Radio Resource Control: điều khiển tài nguyên vô tuyến) cho kênh báo hiệu đầu cuối. Nếu không có kết nối RRC, 3G SGSN thực hiện tìm gọi và cập nhật thông tin vị trí được thực hiện theo RA. Hình 2.17. Các khái niệm phân chia vùng địa lý trong 3G WCDMA UMTS 2.10 TỔNG KẾT Chương này tìm hiểu về kiến trúc mạng 3G . Mạng lõi 3G bao gồm hai vùng chuyển mạch: (1) vùng chuyển mạch các dịch vụ CS và (2) vùng chuyển mạch các dịch vụ PS. Các phát hành đánh dấu các mốc quan trọng phát triển mạng 3G WCDMA UMTS được xét: R3, R4, R5 và R6. R3 bao gồm hai miền chuyển mạch kênh và chuyển mạch gói trong đó kết nối giữa các nút chuyển mạch gọi là TDM (ghép kênh theo thời gian). R4 là sự phát triển của R3 trong đó miền chuyển mạch kênh chuyển thành chuyển mạch mềm và kết nối giữa các nút mạng bằng IP. R5 và R6 hỗ trợ các dịch vụ đa phương tiện IP hoàn toàn dựa trên chuyển mạch gói. Để đáp ứng được nhiệm vụ này ngoài miền chuyển mạch gói, mạng được bổ sung thêm phân hệ đa phương tiện IP (IMS). Cốt lõi của IMS là CSCF thực hiện khởi đầu kết nối đa phương tiện IP dựa trên giao thức khởi đầu phiên (SIP Session Initiation Protocol). Ngoài ra IMS vẫn còn chứa chuyển mạch mềm để hỗ trợ dịch vụ chuyển mạch kênh (MGCF). Hiện nay mạng 3G WCDMA UMTS đang ở giai đoạn chuyển dần từ R4 sang R5 (hình 2.9). Cuối chương trình bày cấu trúc địa lý của một mạng thông tin di động 3G có chứa cả vùng chuyển mạch kênh và vùng chuyển mạch gói. Trong chương 3, ta sẽ tiếp tục tìm hiểu về các kỹ thuật điều khiển công suất trong hệ thống thông tin di động thế hệ ba. CHƯƠNG 3 ĐIỀU KHIỂN CÔNG SUẤT TRONG HỆ THỐNG THÔNG TIN DI ĐỘNG THẾ HỆ BA UMTS 3.1 Giới thiệu chương Hệ thống thông tin di động UMTS là một hệ thống chịu ảnh hưởng rất nhiều của nhiễu do việc sử dụng chung một tần số cho tất cả các thuê bao cũng như quá trình tách sóng không nhất quán tại trạm gốc và ảnh hưởng của hiệu ứng gần xa. Do đó vấn đề điều khiển công suất trong hệ thống thông tin di động UMTS là hết sức quan trọng nhằm giảm ảnh hưởng của nhiễu lên dung lượng của hệ thống để chống lại hiệu ứng gần xa đồng thời kéo dài tuổi thọ của pin, đảm bảo QoS yêu cầu … Chương này phân tích một số kỹ thuật điều khiển công suất trong hệ thống thông tin di động thế hệ ba UMTS và đề cập đến hai thuật toán điều khiển công suất hướng lên. DSSPC (Dynamic step-size Power Control) là phương pháp điều khiển công suất hướng lên thông minh dựa trên việc sử dụng dữ liệu gốc, vòng lặp kín và sự tương thích với những nhân tố quản lý tài nguyên vô tuyến. Trong khi DPC (Distributed Power Control) chỉ sử dụng thông tin SIR và sử dụng kỹ thuật lặp để điều khiển công suất truyền đến mức tối ưu và đáp ứng các yêu cầu về chất lượng của người sử dụng. 3.2 Ý nghĩa của điều khiển công suất Để minh hoạ việc điều khiển công suất cần thiết như thế nào trong hệ thống WCDMA, chúng ta xem xét một ô đơn lẻ có hai thuê bao giả định. Thuê bao 1 gần trạm gốc hơn thuê bao 2. Nếu không có điều khiển công suất, cả hai thuê bao sẽ phát một mức công suất cố định p, tuy nhiên do sự khác nhau về khoảng cách nên công suất thu từ thuê bao 1 là pr1 sẽ lớn hơn thuê bao 2 là pr2. Giả sử rằng vì độ lệch về khoảng cách như vậy mà pr1 lớn gấp 10 lần pr2 thì thuê bao 2 sẽ chịu một sự bất lợi lớn. Nếu tỷ số SNR yêu cầu là (1/10) thì chúng ta có thể nhận ra sự chênh lệch giữa các SNR của hai thuê bao. Hình (3.1) minh hoạ điều này. Nếu chúng ta bỏ qua tạp âm nhiệt thì SNR của thuê bao 1 sẽ là 1 và SNR của thuê bao 2 sẽ là (1/10). Thuê bao 1 có một SNR cao hơn nhiều và như vậy nó sẽ có được một chất lượng rất tốt, nhưng SNR của thuê bao 2 chỉ vừa đủ so với yêu cầu. Sự không cân bằng này được xem là bài toán “xa-gần” kinh điển trong một hệ thống đa truy cập trải phổ. Hệ thống nói trên được coi như đã đạt tới dung lượng của nó. Lý do là nếu chúng ta thử đưa thêm một thuê bao thứ 3 phát cùng mức công suất p vào bất cứ chỗ nào trong ô thì SNR của thuê bao thứ 3 đó sẽ không thể đạt được giá trị yêu cầu. Hơn nữa, nếu chúng ta cố đưa thêm thuê bao thứ 3 vào hệ thống thì thuê bao thứ 3 đó sẽ không những không đạt được SNR yêu cầu mà còn làm cho SNR của thuê bao 2 bị giảm xuống dưới mức SNR yêu cầu. Hình 3.1. Công suất thu từ 2 thuê bao tại trạm gốc Việc điều khiển công suất được đưa vào để giải quyết vấn đề “xa–gần” và để tăng tối đa dung lượng hệ thống. Điều khiển công suất là điều khiển công suất phát từ mỗi thuê bao sao cho công suất thu của mỗi thuê bao ở trạm gốc là bằng nhau. Trong một ô, nếu công suất phát của mỗi thuê bao được điều khiển để công suất thu của mỗi thuê bao ở trạm gốc là bằng với Pr thì nhiều thuê bao hơn có thể sử dụng trong hệ thống. Ví dụ trên, nếu SNR yêu cầu vẫn là (1/10) thì tổng cộng có thể có 11 thuê bao được sử dụng trong ô (hình 3.1). Dung lượng được tăng tối đa khi sử dụng điều khiển công suất. Điều khiển công suất nhằm mục đích để chống lại hiệu ứng Fading Rayleigh trên tín hiệu truyền đi bởi việc bù cho Fading nhanh của kênh truyền. Ngoài ra việc điều khiển công suất còn có tác dụng giảm nhiễu đa đường. Vì công suất phát của máy di động thấp nên làm tăng tuổi thọ của pin. 3.3 Điều khiển công suất vòng hở trong UMTS 3.3.1Giới thiệu Điều khiển công suất vòng hở thực hiện đánh giá gần đúng công suất đường xuống của tín hiệu kênh hoa tiêu dựa trên tổn hao truyền sóng của tín hiệu này. Nhược điểm của phương pháp này là do điều kiện truyền sóng của đường xuống khác với đường lên nhất là do fading nhanh nên sự đánh giá sẽ thiếu chính xác. Ở hệ thống CDMA trước đây, người ta sử dụng phương pháp này kết hợp với điều khiển công suất vòng kín, còn ở hệ thống WCDMA phương pháp điều khiển công suất này chỉ được sử dụng để thiết lập công suất gần đúng khi truy cập mạng lần đầu. 3.3.2 Kỹ thuật điều khiển công suất vòng hở đường lên Chức năng PC (Power Control) được thực hiện cả ở đầu cuối và UTRAN. Chức năng này đòi hỏi một số thông số điều khiển được phát quảng bá trong ô và công suất mã tín hiệu thu được RSPC (Received Signal Code Power) được đo tại UE trên P-CPICH tích cực. Dựa trên tính toán vòng hở, UE thiết lập các công suất khởi đầu trên tiền tố PRACH và cho DPCCH đường lên trước khi khởi đầu PC vòng trong. Trong thủ tục truy cập ngẫu nhiên, công suất của AP đầu tiên được thiết lập bởi UE như sau : Preamble_Initial_Power = CPICH_Tx_power – CPICH_RSCP (3.1) + UL_interference +UL_required_CI Trong đó công suất P_CPICH (CPICH_Tx_Power) và C/I yêu cầu đường lên (UL_required_CI) (trong 3GPP được định nghĩa là giá trị không đổi khi thiết lập quy hoạch vô tuyến) và nhiễu đường lên (UL_interference) (trong 3GPP là tổng công suất băng rộng tại máy thu) được đo tại Node B và được truyền quảng bá trên BCH. UE cũng sẽ tiến hành thủ tục khi lập mức công suất ban đầu cho CD-AP. Khi tính toán DPCCH đầu tiên, UE khởi đầu PC vòng trong tại công suất như sau : DPCCH_Initial_power = DPCCH_Power_offset – CPICH_RSCP (3.2) Trong đó công suất mã tín hiệu thu của P_CPICH (CPICH_RSCP) được đo tại UE và dịch công suất DPCCH (DPCCH_Power_offset) được tính toán bởi điều khiển cho phép AC trong RNC và được cung cấp cho UE khi kết nối RRC hay trong quá trình vật mang vô tuyến hay khi lập lại cấu hình kênh vật lý như sau : DPCCH_Power_offset = CPICH_Tx_power + UL_interference + SIRDPCCH +10lg(SFDPDCH) (3.3) Trong đó SIRDPCCH là SIR đích khởi đầu do AC tạo ra đối kết nối cụ thể này là SFDPCCH là hệ số trải phổ đối với DPDCH tương ứng. Kỹ thuật điều khiển công suất vòng hở đường xuống Trên đường xuống, PC vòng hở để thiết lập công suất khởi đầu các kênh đường xuống trên cơ sở báo cáo đo đạt từ UE. Chức năng này được thực hiện cả ở UE và UTRAN. Giải thuật để tính toán giá trị công suất khởi đầu DPCCH khi dịch vụ mạng đầu tiên được thiết lập như sau : PTxIntinial (3.4) Trong đó Rb là tốc độ bit của người sử dụng, (Eb/No)DL là giá trị được quy hoạch của đường xuống trong quá trình quy hoạch mạng vô tuyến đối với vật mang cụ thể này, W là tốc độ chip, (Eb/No)CPICH được báo cáo từ UE, PtxTotal là công suất sóng mang tại Node B được báo cáo cho RNC. Giải thuật tính toán công suất đoạn nối vô tuyến khởi đầu có thể được đơn giản hóa khi chuyển giao được thiết lập hay đoạn nối vô tuyến thay đổi. Khi bổ sung nhánh, cần chỉ định cỡ lại công suất mã phát của đoạn nối hiện có bằng hiệu số giữa công suất P_CPICH của ô hiện thời với công suất P_CPICH của ô thuộc nhánh bổ sung. Đối với kênh mang thay đổi định cỡ được thực hiện bằng tốc độ bit của người sử dụng mới và Eb/No đường xuống mới. 3.4 Điều khiển công suất vòng kín trong UMTS 3.4.1 Giới thiệu Phương pháp điều khiển công suất nhanh vòng kín như hình (3.2). Ở phương pháp này BS (hoặc MS) thường xuyên ước tính tỷ số tín hiệu trên can nhiễu thu được SIR và so sánh nó với tỷ số SIR đích (SIR_đích). Nếu SIR_ướctính cao hơn SIR_đích thì BS (MS) thiết lập bit điều khiển công suất để lệnh cho MS (BS) hạ thấp công suất, trái lại nó ra lệnh MS (BS) tăng công suất. Chu kỳ đo-lệnh-phản ứng này được thực hiện 1500 lần trong một giây ở cdma2000. Tốc độ này sẽ cao hơn mọi sự thay đổi tổn hao đường truyền và thậm chí có thể nhanh hơn fading nhanh khi MS chuyển động tốc độ thấp. Hình 3.2 Nguyên lý điều khiển công suất vòng kín Kỹ thuật điều khiển công suất vòng kín như vậy được gọi là vòng trong cũng được sử dụng cho đường xuống mặc dù ở đây không có hiện tượng gần xa vì tất cả các tín hiệu đến các MS trong cùng một ô đều bắt đầu từ một BS. Tuy nhiên lý do điều khiển công suất ở đây như sau. Khi MS tiến đến gần biên giới ô, nó bắt đầu chịu ảnh hưởng ngày càng tăng của nhiễu từ các ô khác. Điều khiển công suất trong trường hợp này để tạo một lượng dự trữ công suất cho các MS trong trường hợp nói trên. Ngoài ra điều khiển công suất đường xuống cho phép bảo vệ các tín hiệu yếu do fading Rayleigh gây ra, nhất là khi các mã sửa lỗi làm việc không hiệu quả. Điều khiển công suất vòng ngoài thực hiện đánh giá dài hạn chất lượng đường truyền trên cơ sở tỷ lệ lỗi khung FER hoặc BER để quyết định SIRđích cho điều khiển công suất vòng trong. Hình (3.3a) cho thấy hoạt động của điều khiển công suất đường lên ở một kênh fading ở tốc độ chuyển động thấp của MS. Các lệnh điều khiển công suất sẽ điều khiển công suất của MS tỷ lệ nghịch với công suất thu được (hay SIR) tại BS. Nhờ đảm bảo dự trữ để chỉnh công suất theo từng nấc, nên chỉ còn một lượng fading nhỏ và kênh trở thành kênh hầu như không fading (nhìn từ phía BS). Hình 3.3a. Điều khiển công suất vòng kín bù trừ fading nhanh Tuy nhiên việc loại bỏ phading phải trả giá bằng tăng công suất phát. Vì thế khi MS bị phading sâu, công suất phát sử dụng lớn và nhiễu gây ra cho các ô khác cũng tăng. Điều khiển công suất vòng ngoài thực hiện điều chỉnh giá trị SIRđích ở BS (MS) cho phù hợp với từng yêu cầu của từng đường truyền vô tuyến để đạt được chất lượng các đường truyền vô tuyến như nhau. Chất lượng của các đường truyền vô tuyến thường được đánh giá bằng tỷ số bit lỗi BER hay tỷ số khung lỗi FER (Frame Error Rate). Lý do cần đặt lại SIRđích như sau : SIR yêu cầu (tỷ lệ với Eb/No) chẳng hạn là FER=1% phụ thuộc vào tốc độ của MS và đặc điểm truyền nhiều đường. Nếu ta đặt SIRđích cho trường hợp xấu nhất (cho tốc độ cao nhất) thì sẽ lãng phí dung lượng cho các kết nối ở tốc độ thấp. Như vậy, tốt nhất là để SIRđích thả nổi xung quanh giá trị tối thiểu đáp ứng được yêu cầu chất lượng. Hình (3.3b) cho thấy sự thay đổi SIRđích theo thời gian. Hình 3.3b. Điều khiển công suất vòng ngoài Để thực hiện điều khiển công suất vòng ngoài, mỗi khung số liệu của người sử dụng được gắn chỉ thị chất lượng khung là CRC. Việc kiểm tra chỉ thị chất lượng này sẽ thông báo cho RNC về việc giảm chất lượng và RNC sẽ lệnh cho BS tăng SIRđích. Lý do đặt điều khiển vòng ngoài ở RNC vì chức năng này thực hiện sau khi thực hiện kết hợp các tín hiệu ở chuyển giao mềm. Các thủ tục điều khiển công suất vòng trong Điều khiển công suất vòng trong (điều khiển công suất nhanh) dựa trên thông tin hồi tiếp lớp 1 từ đầu kia của đường truyền vô tuyến. Thông tin này cho phép UE/Node B điều chỉnh công suất phát của mình dựa trên mức SIR thu được để bù trừ fading của kênh vô tuyến. Chức năng điều khiển công suất vòng hở trong ở UMTS được sử dụng cho các kênh riêng cả đường lên và đường xuống và đối với CPCH chỉ ở đường lên. Trong WCDMA, PC nhanh được thực hiện ở tần số 1,5 kHz.Tổng quan các thủ tục điều khiển công suất vòng trong được cho ở hình (3.4). Hình 3.4. Các thủ tục điều khiển công suất vòng trong và vòng ngoài Điều khiển công suất vòng trong đường lên Điều khiển công suất vòng trong đường lên được sử dụng để thiết lập công suất DPCH và CPCH đường lên. Node B nhận được SIR đích từ UL PC vòng ngoài ở RNC và so sánh nó với SIR ước tính trên ký hiệu hoa tiêu của DPCCH đường lên trong từng khe. Nếu SIR thu được lớn hơn SIR đích, Node B phát lệnh “hạ thấp” đến UE, ngược lại Node B phát lệnh“tăng thêm”đến UE trên DPCCH đường xuống. Kích thước bước PC theo tiêu chuẩn phụ thuộc vào tốc độ UE. Đối với đích chất lượng cho trước, kích thước bước UL PC tốt nhất là kích thước cho SIR đích nhỏ nhất. Với tốc độ điều khiển công suất 1500 Hz, kích thước bước PC 1dB có thể theo kịp kênh phading Raleigh với tần số lên đến 55 Hz (30 Km/h). Tại tốc độ cao hơn (tới 80 Km/h) kích thước bước PC 2dB sẽ tốt hơn. Tại tốc độ cao hơn 80 Km/h, điều khiển công suất vòng trong không theo kịp phading và vì thế tạp âm vào đường dẫn đường lên. Có thể giảm ảnh hưởng xấu này bằng cách sử dụng bước PC nhỏ hơn 1 dB. Ngoài ra đối với tốc độ UE thấp hơn 3 Km/h, khi tần suất phading kênh rất nhỏ, sử dụng bước PC nhỏ có lợi hơn. Hai giải thuật (giải thuật 1 và 2) được đặc tả cho UE để diễn giải các lệnh TPC từ Node B. Giải thuật 1 sử dụng khi tốc độ UE đủ thấp để bù trừ phading kênh. Bước PC được thiết lập trong quá trình quy hoạch mạng vô tuyến là 1 đến 2dB. Giải thuật 2 được thiết kế để mô phỏng ảnh hưởng khi sử dụng bước nhỏ hơn 1 dB và có thể sử dụng để bù trừ xu thế phading chậm của kênh truyền sóng. Nó hoạt động tốt hơn giải thuật 1 khi UE chuyển động nhanh hơn 80 Km/h và chậm hơn 3 Km/h. Trong giải thuật bước PC cố định bằng 1 dB. UE không thay đổi công suất phát cho đến khi nhận được lệnh TCP tiếp theo. Tại cuối khe thứ 5, dựa trên quyết định cứng, UE điều chỉnh công suất theo quy tắc như sau : - Nếu tất cả 5 lệnh TPC là “giảm”, công suất giảm 1 dB - Nếu tất cả 5 lệnh TPC là “tăng”, công suất phát tăng 1 dB - Trái lại công suất phát không đổi Trước khi khởi đầu UL DPDCH, UE có thể được mạng hướng dẫn sử dụng tiền tố UL DPDCH, PC khi nhận được DPDCH đường xuống. Độ dài của tiền tố DPDCH PC là một thông số được thiết lập khi quy hoạch mạng vô tuyến trong dải từ 0 đến 7 khung. Trong tiền tố UL DPDCH PC, các lệnh TPC do Node B phát luôn tuân theo giải thuật 1 để đảm bảo đạt công suất phát đường lên nhanh hơn trước khi bắt đầu điều khiển công suất thông thường. Trong UMTS, các sơ đồ phân tập chỉ áp dụng cho các kênh riêng. Sau khi đạt được đồng bộ lớp 1, một hay nhiều ô tham gia vào chuyển giao phân tập sẽ bắt đầu PC vòng trong đường lên. Mỗi ô trong số các ô nối đến UE sẽ đo SIR đường lên và so sánh SIR ước tính với SIR đích để tạo ra lệnh TPC gởi đến UE. Nếu tất cả các ô đều yêu cầu tăng công suất thì UE mới tăng công suất. Hình 3.5. UL PC vòng trong khi chuyển giao mềm Khi UE ở chuyển giao HO (Hand Over) mềm, Node B phục vụ sẽ thông báo cho UE để nó kết hợp các lệnh TPC đến từ cùng một tập đoạn nối vô tuyến vào một lệnh TPC theo giải thuật 2 hoặc 1. Các thủ tục kết hợp các lệnh TPC từ các đoạn nối vô tuyến trong HO mềm được minh họa ở hình (3.5) Nếu các lệnh TPC đến từ các ô khác nhau và giải thuật 1 được sử dụng, thì UE rút ra một lệnh TPC kết hợp trên cơ sở quyết định mềm và thay đổi công suất phát của mình theo bước PC quy định trước. Nếu giải thuật 2 được sử dụng, thì UE thực hiện quyết định cứng theo giá trị của từng lệnh TPC từ các đoạn vô tuyến khác nhau cho năm khe liên tiếp sau đồng chỉnh. Sau đó UE rút ra lệnh TPC cho khe thứ năm theo nguyên tắc sau: - Nếu giá trị trung bình của các ước tính lệnh TPC tức thời lớn hơn 0,5, tăng công suất 1 dB - Nếu giá trị trung bình của các ước tính lệnh TPC tức thời nhỏ hơn 0,5, giảm công suất 1 dB - Trái lại không thay đổi công suất Trong tính toán đường lên, lệnh “tăng” được thể hiện bằng giá trị “+1” còn lệnh “giảm” bằng giá trị “-1”. Trong quá trình kết hợp, sau khi áp dụng điều chỉnh công suất DPCH, tiêu chuẩn yêu cầu UE phải có khả năng giảm công suất phát của mình ít nhất đến -50 dBm. Giả sử công suất phát cực đại của UE là 21 dBm (250 mW), ta được dải động điều khiển công suất vào khoảng 70 dB Điều khiển công suất vòng trong đường xuống UE nhận BLER đích do RNC thiết lập cho DL PC vòng ngoài cùng với các thông số điều khiển khác. UE so sánh SIR ước tính với SIR đích. Nếu ước tính lớn hơn đích, UE phát lệnh TPC “giảm” đến Node B, ngược lại nó phát lệnh TPC “tăng” đến Node B Hình 3.6. Dịch công suất (PO) để cải thiện chất lượng báo hiệu đường xuống Nếu DPC_MODE = 0 UE phát một lệnh TPC cho mỗi khe, trái lại nó phát một lệnh TPC cho ba khe. Các lệnh TPC được phát trên UL DPCCH để điều khiển công suất của DL DPDCH và các DPDCH tương ứng với nó bằng cùng một lượng công suất. Dịch công suất của các ký hiệu TFCI (PO1), TPC (PO2) và hoa tiêu (PO3) của kênh DL DPCCH so với kênh DL DPDCH được cho ở hình (3.6) Kích thước bước DL PC là một thông số của quá trình quy hoạch mạng vô tuyến các bước có thể là 0,5; 1; 1,5 hoặc 2 dB. Bước bắt buộc tối thiểu là 1dB còn các bước khác là tuỳ chọn. Nếu UE ở chuyển giao mềm SHO (Soft Hand Over), tất cả các ô nối đến UE phải có bước PC như nhau để tránh trôi công suất. Trong trường hợp nghẽn, RNC có thể lệnh cho Node B không thực hiện lệnh TPC “tăng” của UE. Hình 3.7. Dải động điều khiển công suất đường xuống DL PC vòng trong trong quá trình HO mềm hơn hoạt động giống như trong trường hợp đoạn nối vô tuyến. Chỉ có một DPCCH được phát ở đường lên, báo hiệu và phần số liệu nhận được từ các anten khác nhau được kết hợp cho ký hiệu trong Node B. Trên đường xuống Node B điều khiển đồng thời công suất của tập đoạn nối vô tuyến và chia luồng nhận được từ DCH-FP cho tất cả các ô tham gia vào HO mềm hơn. Trong SHO, DL PC vòng trong gặp hai vấn đề khác với trường hợp một đoạn nối vô tuyến trôi công suất và phát hiện tin cậy các lệnh TPC. Hoạt động DL PC vòng trong trong khi SHO được minh hoạ trên hình (3.8) Hình 3.8. DL PC vòng trong khi DHO (SHO) Trôi công suất Khi UE ở SHO, nó phát một lệnh điều khiển đường xuống đến tất cả các ô tham gia vào SHO. Các Node B giải lệnh độc lập với nhau, vì không thể giải lệnh kết hợp ở RNC do trễ quá lớn và báo hiệu quá nhiều trong mạng. Do lỗi báo hiệu nên các Node B có thể giải lệnh điều khiển công suất theo các cách khác nhau. Nên có thể một Node B hạ thấp công suất phát của mình trong khi Node B khác lại tăng công suất phát. Điều này dẫn đến công suất phát xuống bắt đầu trôi, hiện tượng này được gọi là trôi công suất. Trôi công suất là hiện tượng không mong muốn, vì nó giảm hiệu năng chuyển giao mềm đường xuống. Trôi công suất có thể được điều khiển bởi RNC. Phương pháp đơn giản nhất là thiết lập các giới hạn chặt chẽ đối với các dải động của điều khiển công suất. Các giới hạn này được áp dụng cho các công suất phát đặc thù của MS. Tất nhiên dải động càng nhỏ thì trôi công suất cực đại càng ít. Tuy nhiên điều này làm giảm độ lợi nhận được từ SHO. Có một cách khác để giảm trôi công suất như sau. RNC có thể nhận thông tin từ các Node B liên quan đến các mức công suất phát của các kết nối chuyển giao mềm. Các mức này được trung bình hóa trên một số lệnh điều khiển công suất, chẳng hạn trong 500 ms hay tương đương với 750 lệnh điều khiển công suất. Trên cơ sở các kết quả đo này RNC có thể phát giá trị tham chuẩn cho các công suất phát Pref đến các Node B. Các Node B trong SHO sử dụng giá trị tham khảo này để điều khiển công suất của chúng cho kết nối và giảm trôi công suất. Ý tưởng ở đây là một hiệu chỉnh nhỏ được thực hiện định kỳ cho công suất tham chuẩn. Trôi công suất chỉ xảy ra khi có điều khiển công suất nhanh đường xuống. Ở IS-95 chỉ có điều khiển công suất chậm đường xuống và không cần phương pháp điều khiển trôi công suất. Điều khiển công suất vòng ngoài Mục đích của giải thuật điều khiển công suất vòng ngoài là duy trì chất lượng thông tin tại mức SIR được định nghĩa bởi các yêu cầu chất lượng đối với kênh mang dịch vụ bằng cách tạo ra SIR đích phù hợp cho PC vòng trong. Thao tác này được thực hiện cho từng DCH thuộc cùng kết nối RRC. SIR đích cần được điều chỉnh mỗi khi tốc độ UE hay các điều kiện truyền sóng thay đổi. Sự thay đổi công suất thu càng lớn, yêu cầu SIR đích càng cao. Nếu chọn một SIR đích cố định, thì chất lượng thông tin có thể quá thấp hoặc quá cao dẫn đến trong một số trường hợp công suất không đảm bảo chất lượng đường truyền còn trong một số trường hợp khác tăng lãng phí công suất. Tần số của PC vòng ngoài thay đổi từ 10 đến 100 Hz. Khi SHO trên đường lên các luồng số liệu DCH từ các ô khác nhau đi qua Iub và Iur sẽ kết hợp lại SNRC thành một luồng. Trên đường xuống luồng số liệu DCH được tách thành nhiều luồng cho các Node B trong SHO. Quá trình kết hợp và tách này ở RNC được thực hiện ở bộ kết hợp phân tập vĩ mô MDC (Macro Diversity Combiner). MDC trong RNC dựa trên thông tin nhận được trong các khung FP hay chính là các kết quả CRC đặc thù khối truyền tải và thông tin chất lượng được ước tính. SHO tin cậy dựa trên thông tin CFN chứa trong các luồng Iub/Iur. Tại UE, kết hợp tỷ lệ cực đại MRC (Maximum Ratio Combining) cho các tín hiệu thu được thực hiện theo các ký hiệu (số liệu và hoa tiêu). Trên đường lên chỉ truyền một DCCPH. Điều khiển công suất vòng ngoài đường lên UL PC vòng ngoài thực hiện ở SRNC để lập SIR đích tại Node B cho từng UL PC vòng trong. SIR đích được cập nhật cho từng UE dựa trên ước tính chất lượng đường lên (BLER và BER) cho kết nối RRC. Giải thuật điều khiển sử dụng CRC của luồng số liệu làm số đo chất lượng. Nếu CRC đạt yêu cầu, thì SIR đích được giảm đi một lượng nhất định, trái lại nó tăng lên. Giá trị thông thường của bước điều chỉnh SIR là từ 0,1 đến 1 dB. Kiến trúc chức năng UL PC vòng ngoài áp dụng cho trường hợp dịch vụ nhiều kênh mang được cho trên hình (3.9) Hình 3.9 .Kiến trúc logic chức năng UL PC vòng ngoài Chỉ có một bộ điều khiển PC vòng ngoài cho từng kết nối RRC và một thực thể UL PC vòng ngoài cho từng DCH trong cùng một kết nối. Các thực thể UL PC vòng ngoài tính toán thay đổi cần thiết cho SIR đích dựa trên ước tính chất lượng. Trong cùng một kết nối RRC, một trong các thực thể UL đường lên (đường báo hiệu DCCH) được chọn để phát SIR đích mới đến Node B. SIR đích nhận được tính toán bởi bộ điều khiển UL PC vòng ngoài dựa trên các thay đổi trong các SIR đích nhận được từ các thực thể PC và các thông số cấu hình khác (như : SIR đích khởi đầu/ cực đại/ cực tiểu) do AC cung cấp tại thời điểm thiết lập RAB và lập lại cấu hình đoạn nối vô tuyến. DCH-FP được sử dụng cho thông tin tương tác giữa RNC và các Node B. Mỗi thực thể UL PC đường lên nhận thông tin chất lượng đường lên từ MDC, tại đây số liệu đến từ các nhánh SHO khác nhau được kết hợp (thủ tục chọn và kết hợp). Phụ thuộc vào kiểu kênh mang vô tuyến, thực thể PC nhận hoặc ước tính BLER được tính ở MDC theo các bit CRC của các khung được chọn và/hoặc ước tính BER được tính tại Node B. Nếu CRC không ổn, MDC có thể chọn ước tính tốt nhất trong số các ước tính BER. Tại TTI, một hay nhiều thực thể PC có thể đóng góp vào tính toán SIR đích mới, chẳng hạn khi hiệu số giữa ước tính BLER/BER và BLER/BER đích nhân với một bước lớn hơn 0,1 dB. Điều khiển công suất vòng ngoài đường xuống DL PC vòng ngoài được thực hiện tại UE, giá trị SIR đích cho DL PC vòng trong được điều chỉnh bởi UE bằng cách sử dụng một thuật toán riêng đảm bảo chất lượng đo (BLER) giống như chất lượng đích do RNC thiết lập. Nếu CPCH được sử dụng, đích chất lượng do RNC thông báo là DCCH BER, trái lại BLER đích được cung cấp cho UE. Ngoài ra khi sử dụng BLER kênh truyền tải làm BLER đích trong thông tin, DL PC vòng ngoài đảm bảo rằng yêu cầu chất lượng được duy trì cho từng TrCH với BLER đích được gán. Mặt khác, nếu BER của DL DCCH được phát ở dạng chất lượng đích, vòng điều khiển trong UE sẽ đảm bảo chất lượng cho từng CPCH với DL DPCCH BER đích được gán. Giá trị chất lượng DL PC đích trong UE được điều khiển bởi AC trong RNC. AC quyết định giá trị của BLER đích cho từng DCH được đặt trên CCTrCH. BER đích đường xuống cho từng kênh truyền tải sau đó được UE nhận trên các bản tin RRC. Điều khiển công suất ở các kênh chung đường xuống Công suất truyền dẫn ở các kênh chung đường xuống được xác định bởi mạng. Nói chung tỷ lệ giữa công suất phát của kênh chung đường xuống khác nhau không được đặc tả trong 3GPP và thậm chí có thể thay đổi linh hoạt. Các mức công suất kênh chung được cho ở bảng (3.1) Bảng 3.1. Các mức công suất kênh chung đường xuống điển hình Kênh chung đường xuống Mức công suất điển hình Lưu ý P-CPICH P-SCH và S-SCH P-CCPCH PICH AICH A-CCPCH 30 – 33 dBm -3 dB -5 dB -8 dB -8 dB -5dB 2 – 10% công suất phát cực đại của ô (20 W) So với công suất P-CPICH So với công suất P-CPICH So với công suất P-CPICH và N=72 Công suất của một chỉ thị bắt (AI) so với P-CPICH So với công suất P-CPICH và SF-256 (15 kbps) Công suất phát của P-CPICH, P-SCH, S-SCH, và P-CCPCH là các thông số đặc thù ô được thiết lập trong quá trình quy hoạch mạng theo kích thước ô. Thông thường công suất P-CPICH bằng 5 đến 10% tổng công suất phát có thể cấp phát cho ô. Công suất phát của các kênh chung khác nhau thiết lập tương đối so với công suất phát của P-CPICH. Công suất phát của AICH và PICH là các thông số cấu hình TrCH chung được thiết lập tương đối so với công suất phát P-CPICH trong quá trình quy hoạch mạng vô tuyến để đảm bảo phủ toàn bộ ô. Các thông số này được chuyển đến Node B mỗi khi TrCH chung tương ứng được thiết lập hay lập lại cấu hình. Công suất phát PICH phụ thuộc vào thông số PI trên khung (N). Số PI trên khung càng lớn thì PI càng được lặp nhiều trên khung và công suất PICH tương đối so với P-PICH càng cần cao hơn. Giá trị điển hình của khoảng dịch công suất là -10 dB (N=18 hay 36), -8 dB (N=72) và -5 dB (N=144). Theo tiêu chuẩn, khi thiết lập hoặc lặp lại cấu hình S-CCPCH (nghĩa là FACH và PCH), Node B được cung cấp thông tin dịch công suất (PO1 cho TFCI), PO3 cho hoa tiêu (hình 3.10). Trên kênh FACH có thể áp dụng PC chậm dựa trên tỷ số Eb/No của một giải thuật riêng để cải thiện dung lượng đường xuống. Trong trường hợp này giá trị chỉ thị là dịch âm so với công suất cực đại được lập cấu hình cho S-CCPCH mang FACH. Nếu ta coi rằng công suất như nhau đối với tất cả TrCH ghép trên cùng kênh vật lý, các giá trị công suất điển hình cho S-CCPCH so với P-CPICH là +1 đối với SF = 64 (60 kbps), -1dB đối với SF = 128 (30 kbps) và -5 dB đối với SF = 256 (15 kbps). Đối với CCPCH, các giá trị điển hình có thể là 2 dB cho 15 kbps, 3 dB cho 30 kbps và 4 dB cho 60 kbps. Trong quá trình thông tin, dịch công suất có thể thay đổi tuỳ theo tốc độ bit được sử dụng. Hình 3.10 Công suất phát trên kênh S-CCPCH, PO3 và PO1 ký hiệu cho dịch 3.6 Phương pháp điều khiển công suất theo bước động DSSPC (Dynamic Step Size Power Control) 3.6.1 Khái niệm và lợi ích của độ dự trữ, cửa sổ công suất Độ dự trữ SIR nhiều mức là sự giả thiết về sự biến đổi kênh ban đầu mà cần phải được xác định theo kết quả của phép đo vô tuyến thời gian thực. Những giới hạn trên và dưới của độ dự trữ công suất tùy thuộc vào tải/giao thoa của mạng vô tuyến trong truy cập vô tuyến hay tại mức tế bào. Bằng việc xác định độ dự trữ công suất nhằm đảm bảo các chỉ tiêu và độ ổn định của hệ thống. Do mạng vô tuyến là môi trường động, vùng dự trữ công suất có thể dao động lên trên và xuống dưới khi mức tải và giao thoa thay đổi. Khi kênh mang vô tuyến được thiết lập, DSSPC sẽ điều khiển mức công suất truyền để tối ưu trong dự trữ công suất. Điều này có thể đạt được nhờ sử dụng thông tin chất lượng dịch vụ QoS của kênh mang cũng như mức nhiễu mà nó gây ra cho mạng và dung lượng của mạng liên quan đến nhiễu. Để cung cấp chất lượng dịch vụ tốt nhất với mức tối thiểu công suất truyền (hay SIR) cần cân bằng giữa chất lượng dịch vụ QoS, dung lượng mạng, quản lý cước kênh mang… Tuy nhiên kết quả điều khiển công suất không tất yếu là ở mức tối thiểu có thể. Hình 3.11 Dự trữ SIR đối với các chất lượng dịch vụ khác nhau Hình (3.11) là đồ thị mức công suất truyền của trạm di động dưới dạng nhiều mức SIR được điều khiển để hội tụ đến mức tối ưu. Thay vì một ngưỡng của SIR đích, SIR nhiều mức có nhiều ngưỡng, bao gồm giới hạn trên và dưới được xác định. Do đó, mỗi dịch vụ như thoại, dữ liệu và hình ảnh có mức công suất truyền tối ưu đặc biệt mà trạm di động từ ở trên hay ở dưới. 3.6.2 Sự hoạt động của mạng Hình (3.12) là giản đồ căn bản của phương pháp DSSPC đối với điều khiển công suất đường lên. Trong điều khiển công suất đường lên, bên cạnh mạng, điều khiển truy cập vô tuyến và trạm gốc là cơ sở cho điều khiển từng phần của tiến trình điều chỉnh công suất. Điều khiển cho phép và điều khiển công suất của bộ điều khiển truy cập vô tuyến thiết lập các đích chất lượng tín hiệu gồm SIR_max, SIR-opt_max, SIR_opt_min và SIR_min. Điều này có thể dựa trên thông tin lưu lượng sẵn có trong AC (Admission Cotrol),cường độ tín hiệu,SIR, các độ ưu tiên truy cập, thông tin hỗ trợ định vị… i = 1 Bắt đầu SIRopt_max SIR_reali SIR_max SIRopt_min SIR_reali < SIR_opt_max SIR_reali > SIR _max SIR_min SIR_reali < SIR_opt_min SIR_reali < SIR_min Lệnh giảm công suất truyền: Pdki = Poi - a.bmax Lệnh giảm công suất truyền: Pdki = Poi - a.bmin Lệnh tăng công suất truyền: Pdki = Poi + a.bmin Lệnh tăng công suất truyền: Pdki = Poi + a.bmax Công suất nhận là tối ưu: Pdki = Poi Sai Sai Sai Sai Đúng Đúng Đúng Đúng Đúng [111] [010] [100] [110] [101] i N Kết thúc Sai Đúng Tính SIR_reali Tính Poi i = i+ 1 Nhập số thuê bao N, các mức SIR đích Nhập các thông số của chương trình Hình 3.12 Lưu đồ thuật toán điều khiển công suất theo bước động DSSPC Như trong hình (3.12), trạm gốc phát lệnh công suất truyền (TPC: Transmit Power Command) bằng việc so sánh SIR nhận được/công suất của kênh đường lên với các ngưỡng xác định của SIR/độ dự trữ công suất. 3.6.3 Sự hoạt động của trạm di động Đầu tiên, trạm di động nhận lệnh điều khiển công suất từ trạm gốc. Nó ghi lệnh điều khiển công suất tiếp theo vào thanh ghi lệnh. Việc thay đổi dữ liệu gốc được lưu trữ ở đây bao gồm dữ liệu về những lệnh điều khiển công suất gần đây nhất, kích cỡ bước, và tọa độ máy thu cầm tay . Trạm di động kiểm tra giá trị của lệnh điều khiển công suất, kích cỡ bước, và thông tin hỗ trợ định vị bao gồm sự thay đổi dữ liệu gốc. Nếu lệnh điều khiển công suất hay chuỗi kích thước bước là chẵn, nghĩa là mức công suất không hoàn toàn thay đổi nhưng giữ ổn định và không có số lượng đáng kể cần thay đổi công suất truyền. Để tính kích thước của DSS (Dynamic Step-Size) dựa vào phương trình (3.5), trạm di động xác định giá trị của toàn bộ điều khiển công suất. Bước điều khiển công suất là kết quả kết hợp của giá trị không đổi và giá trị thay đổi của điều khiển công suất. Do đó, trạm di động điều chỉnh công suất truyền của nó bằng cách thêm DSS vào công suất tín hiệu ban đầu Po như sau : Ptrx(dB) = Po(dB) + DSS (dB) DSS(dB) = a. b. g , và g = 1 khi ∆SIR < 0 -1 khi ∆SIR > 0 (3.5) Trong phương trình (3.5), α là kích thước bước cố định đã được xác định trước và β là thành phần động của DSS được định nghĩa dựa trên giá trị thực và đích của SIR tương ứng với kết nối vô tuyến. Mục đích của DSS là để bù vào sự suy giảm công suất vì kênh truyền không ổn định. Để định nghĩa giá trị của thông số SIR nhận được và SIR đích cần phải sẵn có. Tuy nhiên, thông tin này sẵn có tại trạm gốc. Do đó, việc điều chỉnh công suất truyền đường lên có hai khả năng thực hiện : - Thông tin liên quan đến SIR được truyền đến trạm di động bằng cách dùng tín hiệu kênh chuyên dụng hay kênh chung. Bộ phân tích dữ liệu gốc (HDLA: History Data Analyzer Logic) của trạm di động tính toán giá trị của β dựa trên bảng dò tìm (bảng 3.2). - Giá trị của β được tính toán tại trạm gốc bằng việc dùng tiêu chuẩn được định nghĩa trong bảng dò tìm. Như một kết quả, thông tin được truyền đến trạm di động thật ra là α.β. Trong trường hợp trạm di động không cần tính tham số liên quan đến SIR, giảm bớt sự phức tạp và sự tiêu thụ pin của nó. Trong bảng (3.2) ki = ( 0,…,kk+1 ) là số nguyên, có thể tối ưu dựa trên những phép đo thực tế liên quan đến mạng vô tuyến. Do đó, nó có thể thay đổi phụ thuộc vào sự thay đổi thời gian thực trong chất lượng tín hiệu vì fading và đích SIR cho kênh mang yêu cầu ánh xạ bởi mạng. Trong ví dụ này các giá trị nhiều mức của SIR đích được định nghĩa như : SIR_max, SIRopt_ max, SIRopt_ min, SIR_min. Bảng 3.2 Bảng tra cứu ứng dụng DSSPC Tiêu chuẩn so sánh SIR SIRopt_min SIRreal SIR max 0 X SIRopt_max SIRreal SIRmax K1 1 SIRreal > SIRmax K2 1 SIRmin SIRreal SIRopt_min K1 -1 SIRreal < SIRmin K2 -1 Đối với 5 điều kiện căn bản trong thuật toán, sử dụng 3 bit để truyền thông tin yêu cầu giữa trạm gốc và máy di động. Có thể sử dụng 3 điều kiện khác nhau của thuật toán, để giảm số bit yêu cầu điều khiển công suất truyền TPC . Hình (3.13) chỉ ra một ví dụ về sơ đồ khối thực hiện phương pháp điều khiển công suất ứng dụng cho đường lên. Trạm gốc nhận tín hiệu được truyền bởi trạm di động và hướng tới để giữ cường độ tín hiệu nhận được không thay đổi bằng cách gởi lệnh điều khiển công suất đến trạm di động. Hình 3.13 Mô hình chung của DSSPC đối với điều khiển công suất đường lên Trạm gốc chịu trách nhiệm để đo SIR nhận được và một phần của những phép đo đó yêu cầu thiết lập thông số dự trữ công suất và các đích SIR. Các phép đo được thực hiện sau máy thu phân tập RAKE, nơi kết nối nhiều nhánh khác nhau của tín hiệu nhận được. Tại khối trạm gốc, các giá trị đích và giá trị đo được của SIR được so sánh. Để xác định lệnh công suất truyền, bộ phát trạm gốc gởi các lệnh công suất phát (TPCs) đến trạm di động để tăng, giảm hay giữ công suất truyền không thay đổi. Tại trạm di động, các lệnh điều khiển công suất được tập hợp thành một vector mà trạm di động ghi vào bộ phân tích dữ liệu gốc (HDLA). HDLA phân tích vector bit lệnh nhận được khi đưa ra giá trị thích ứng của DSS. HDLA đưa ra thành phần thích ứng của DSS dựa trên thông tin nhận được từ trạm gốc dưới dạng luồng bit TPC. Cuối cùng, phần tử điều khiển điều chỉnh công suất truyền của trạm di động dựa trên phương trình (3.5). Các công thức tính toán - Tỷ số tín hiệu trên nhiễu (SIR : Signal to Interference Ratio) Theo phương thức song công FDD tín hiệu đường lên và tín hiệu đường xuống được truyền trên 2 dải thông phân biệt. Mã trải phổ dùng cho tín hiệu đường xuống từ một BS là các mã trực giao trong khi mã trải phổ đường lên hay đường xuống từ một BS khác nhau là các mã giả ngẫu nhiên. Vì môi trường truyền sóng trong thông tin di động là môi trường đa đường nên mặc dù sử dụng các mã trực giao ở đường xuống thành phần nhiễu do tín hiệu người sử dụng khác trong cùng BS gây ra vẫn không bị triệt tiêu. Tỷ số công suất tín hiệu trên tạp âm đường lên SIR đối với một thuê bao được xác định như sau : Trong đó SF là hệ số trãi phổ (spreading factor) , Pr là công suất thu, là hệ số giảm trực giao (0££1). Iin là nhiễu gây ra do tín hiệu cùng một BS, Iout là nhiễu gây ra do tín hiệu từ BS khác và PN là công suất nhiệt tạp âm (nhiễu nền). Đối với đường lên, không có trực giao nên Ġ = 1. Trước khi nén phổ SIR được tính theo phương trình sau : Sau khi nén phổ tổng công suất can nhiễu I = Iintra + Iinter +PN , vì vậy SIR được viết lại như sau : với : I = Io . Bw hay SIR = SF (dB) +Pr (dB) – Io – 10. lg(Bw) (dB) (3.6) - Hệ số trải phổ hay (dB) (3.7) Trong đó : Rt là tốc độ dữ liệu (Mbps) - Khuếch đại công suất di động Pma = Pme - Lm - Gm ( dBm ) (3.8) Pma : công suất ra của bộ khuếch đại công suất di động (dBm) Pme : ERP từ anten phát của MS (dBm) Lm : suy hao cáp giữa đầu ra của bộ khuếch đại công suất và đầu vào của anten MS (dB) Gm : tăng ích anten phát MS (dBm) - Công suất thu ở BS trên người sử dụng Pr = Pme + Lp + Al + Gt + Lt (dBm) (3.9) Pr : công suất kênh lưu lượng thu tại BS phục vụ từ MS (dBm) Lp : tổn hao truyền sóng trung bình giữa MS và BS (dB) Al : suy hao pha dinh chuẩn lg (dB) Gt : tăng ích anten thu BS (dB) Lt : tổn hao conector và cáp thu của BTS (dB) - Mật độ công suất của các MS khác ở BTS phục vụ Iutr = Pr + 10 lg(Nt - 1) + 10 lgCa – 10 lgBw (dBm/Hz) (3.10) Iutr : mật độ nhiễu giao thoa từ các MS khác ở BTS phục vụ (dBm/Hz) Ca : hệ số tích cực thoại kênh lưu lượng (0,4 ÷ 0,6) Nt : số kênh lưu lượng trong cell đang xét Bw : độ rộng băng tần (Hz) - Mật độ nhiễu giao thoa từ các trạm di động ở các BTS khác Ictr = Iutr + 10. lg(1/ fr -1 ) (dBm/Hz) (3.11) Ictr : mật độ nhiễu giao thoa từ các MS ở các BS khác (dBm/Hz) fr : hệ số tái sử dụng tần số (0,6) - Mật độ nhiễu giao thoa từ các MS khác tại BS đang phục vụ và từ các BS khác Itr = 10 lg (10 0,1. Iutr + 10 0,1 Ictr ) (dBm/Hz) (3.12) Itr : là mật độ nhiễu giao thoa từ các MS khác đến BS đang ph

Các file đính kèm theo tài liệu này:

  • docnguyenbadiep.doc
Tài liệu liên quan