Tài liệu Đề tài Đa dạng hóa các môi trường sản xuất bacterial cellulose từ vi khuẩn Acetobacter xylinum: 1
Chƣơng 1. MỞ ĐẦU
1.1 Đặt vấn đề
Cuộc sống ngày càng hiện đại, số lượng người bị các chứng béo phì và các
bệnh về tiêu hóa cũng ngày một nhiều hơn. Đó là hậu quả của việc sử dụng “fast food”
- thức ăn nhanh và những loại thực phẩm quá nhiều chất béo. Do đó, vấn đề đặt ra là
cần phải có một loại thực phẩm năng lượng thấp, không lipid, lại giúp kích thích sự
tiết thực để hạn chế phần nào các nguy cơ bệnh trên, mà vẫn phải thơm ngon, hấp dẫn
đối với người tiêu dùng. Thạch dừa – Nata de Coco là một ví dụ.
Thạch dừa thực chất là sinh khối của vi khuẩn Acetobacter xylinum nuôi trên
môi trường nước dừa già, có thành phần chủ yếu là cellulose nên được gọi là cellulose
vi khuẩn (bacterial cellulose - BC).
Thuận lợi của việc sản xuất thạch dừa theo phương pháp lên men truyền thống
chính là ưu điểm của công nghệ sản xuất vi sinh: tốc độ sinh sản nhanh, trang thiết bị
đơn giản, ít tốn mặt bằng và nhân công, tương ứng giá thành rẻ… Tuy nhiên, điểm hạn
chế của nó lại ...
47 trang |
Chia sẻ: hunglv | Lượt xem: 1231 | Lượt tải: 0
Bạn đang xem trước 20 trang mẫu tài liệu Đề tài Đa dạng hóa các môi trường sản xuất bacterial cellulose từ vi khuẩn Acetobacter xylinum, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
1
Chƣơng 1. MỞ ĐẦU
1.1 Đặt vấn đề
Cuộc sống ngày càng hiện đại, số lượng người bị các chứng béo phì và các
bệnh về tiêu hóa cũng ngày một nhiều hơn. Đó là hậu quả của việc sử dụng “fast food”
- thức ăn nhanh và những loại thực phẩm quá nhiều chất béo. Do đó, vấn đề đặt ra là
cần phải có một loại thực phẩm năng lượng thấp, không lipid, lại giúp kích thích sự
tiết thực để hạn chế phần nào các nguy cơ bệnh trên, mà vẫn phải thơm ngon, hấp dẫn
đối với người tiêu dùng. Thạch dừa – Nata de Coco là một ví dụ.
Thạch dừa thực chất là sinh khối của vi khuẩn Acetobacter xylinum nuôi trên
môi trường nước dừa già, có thành phần chủ yếu là cellulose nên được gọi là cellulose
vi khuẩn (bacterial cellulose - BC).
Thuận lợi của việc sản xuất thạch dừa theo phương pháp lên men truyền thống
chính là ưu điểm của công nghệ sản xuất vi sinh: tốc độ sinh sản nhanh, trang thiết bị
đơn giản, ít tốn mặt bằng và nhân công, tương ứng giá thành rẻ… Tuy nhiên, điểm hạn
chế của nó lại là phụ thuộc vào nguồn nguyên liệu, dẫn đến khó ứng dụng sản xuất ở
quy mô công nghiệp. Môi trường nước dừa già là nguyên liệu thường dùng để sản xuất
thạch dừa nhưng chỉ có sẵn ở một số vùng (mang tính địa phương), còn những vùng
khác lại rất khan hiếm do các yếu tố địa lí. Công tác vận chuyển nước dừa đến các
vùng này cũng gặp rất nhiều khó khăn.
Do đó, vấn đề đặt ra cần phải giải quyết là môi trường lên men phải xuất phát
từ những nguồn nguyên liệu sẵn có, đa dạng, rẻ, có số lượng lớn, dễ vận chuyển và
mang quy mô công nghiệp, không mang tính cục bộ, điạ phương, có thể tận dụng được
phế phụ liệu từ các quá trình sản xuất thực phẩm khác.
Xuất phát từ những yêu cầu trên, tôi thực hiện đề tài “Đa dạng hóa các môi
trƣờng sản xuất bacterial cellulose từ vi khuẩn Acetobacter xylinum”.
2
1.2 Mục đích của đề tài
- Tìm môi trường thay thế môi trường nước dừa già truyền thống để nuôi cấy vi
khuẩn Acetobacter xylinum
- Tìm được công thức tối ưu nhất để sản xuất bacterial cellulose trên các môi
trường thay thế.
1.3 Yêu cầu
- Thuần khiết giống và giữ giống Acetobacter xylinum
- Khảo sát và đánh giá sinh khối cellulose thô trên các môi trường:
Nước dừa già (đối chứng)
Nước ép dứa
Nước cốt dừa
- Khảo sát và đánh giá khả năng phát triển của Acetobacter xylinum khi thay đổi
các thành phần bổ sung.
3
Chƣơng 2. TỔNG QUAN TÀI LIỆU
2.1 Giới thiệu chung về thạch dừa
Thạch dừa (Nata de Coco) là một loại thức ăn tráng miệng phổ biến, có nguồn
gốc từ Philippin, được tạo ra từ sự lên men nước dừa bởi vi khuẩn Acetobacter
xylinum, và là một trong số các loại thực phẩm thương mại đầu tiên ứng dụng từ
bacterial cellulose (BC).
“Nata” là một từ Tây Ban Nha, xuất phát từ một từ Latin “Nata” có nghĩa là
“nổi trôi” [Africa,1944].
Theo từ điển Bách khoa toàn thư mô tả thì Nata là “một khối cơ chất dày nổi
trên bề mặt các loại môi trường”.
Nata đã được nghiên cứu và mô tả bởi rất nhiều nhà khoa học từ năm 1949 –
1987. Trong số đó, định nghĩa của Sanger là rõ ràng và chính xác nhất: “Cellulosic có
màu trắng đến vàng kem là cơ chất được hình thành bởi Aceti sp. xylinum trên bề mặt
các loại môi trường có chứa đường như nước dừa, nước cốt dừa, dịch chiết thực vật,
nước ép trái cây và các vật liệu phế phẩm khác” [Sanger, 1987].
Hình 2.1: Hình ảnh chung về Nata [29]
4
Bản chất của váng này là lớp màng hemicellulose bao quanh vi khuẩn, lớp
màng này dày hơn rất nhiều so với kích thước tế bào. Hemicellulose là một loại
polysaccaride được tế bào vi khuẩn tổng hợp từ quá trình trao đổi chất trong môi
trường nuôi cấy, chúng tích tụ đáng kể trong môi trường nhưng do không hoà tan trong
nước (chỉ tan trong dung dịch kiềm - đồng amoni hydroxit) nên rất dễ tách ra khỏi môi
trường nuôi cấy [Vương Thị Việt Hoa, 2000].
Thạch dừa không có giá trị dinh dưỡng cao nhưng tạo cảm giác ngon miệng nên
là món ăn thú vị dùng tráng miệng và đặc biệt tốt đối với người đang ăn kiêng do nó
không chứa các chất hóa học, chất bảo quản, chất tăng trưởng, lại giàu chất xơ, ít
calories, không cholesterol. Ngoài ra, thạch dừa cũng rất có ích trong việc bài tiết của
cơ thể do đặc tính kích thích nhu động ruột làm cho việc điều hòa bài tiết được tốt hơn.
Vì thế, thạch dừa còn được xem như chất xơ tiết thực tối hảo. Chế phẩm từ dừa này
còn là món ăn tuyệt diệu có tác dụng phòng ngừa ung thư, ngăn nguy cơ nghẽn mạch
vành, nguy cơ tăng đột ngột lượng đường trong nước tiểu, giúp giữ làn da mịn màng,
tươi trẻ [Trần Phú Hoà,1996].
2.2 Đặc điểm của vi khuẩn acetic và vi khuẩn Acetobacter xylinum trong quá trình
lên men tạo BC
2.2.1 Vi khuẩn acetic
Acetobacter là tác nhân chính của quá trình lên men acetic, vì vậy nó còn được
gọi là vi khuẩn acetic. Đây là loại vi khuẩn rất phổ biến trong tự nhiên, có thể phân lập
được từ dấm, rượu bia, hoa quả; từ không khí, đất, nước… Có khoảng 20 loài thuộc
giống Acetobacter đã được phân lập và mô tả, trong đó nhiều loài có ý nghĩa về kinh tế
[Nguyễn Lân Dũng, 1976].
2.2.1.1 Đặc điểm hình thái
Vi khuẩn acetic là những trực khuẩn hình que đến elip, kích thước trung bình
0,6 – 0,8 m x 1 – 3 m. Các tế bào đứng tách riêng rẽ, một số xếp thành dạng chuỗi
5
dài. Một số loài đặc biệt có tế bào hình cầu, xoắn, chùy, hình chỉ hay hình bán nguyệt
tùy thuộc điều kiện pH môi trường và nhiệt độ nuôi cấy.
Vi khuẩn acetic không có khả năng tạo bào tử. Một số loài có thể di động nhờ
tiên mao ở một đầu – đơn mao, hay chu mao, một số không có khả năng này. Đây là vi
khuẩn hiếu khí bắt buộc, bắt màu Gram âm khi còn non, khi già có thể đổi Gram.
Trên môi trường đặc, vi khuẩn acetic phát triển thành những khuẩn lạc tròn,
nhỏ, đều đặn, đường kính trung bình là 3 mm. Một số loài như A.aceti, A. xylinum có
khuẩn lạc rất nhỏ (d = 1 mm), bề mặt trơn bóng, phần giữa khuẩn lạc lồi lên, dày hơn
và sẫm màu hơn các phần chung quanh. Một số loài có khuẩn lạc lớn (d = 4 – 5 mm),
bề mặt trơn bóng, không có màu, mỏng như những hạt sương nhỏ, dễ dùng que cấy gạt
ra khỏi môi trường. Một số loài tạo thành khuẩn lạc ăn sâu vào môi trường nên khó lấy
ra bằng que cấy.
Trên môi trường lỏng, vi khuẩn acetic chỉ phát triển trên bề mặt môi trường, tạo
thành những lớp màng dày, mỏng khác nhau. Một số loài tạo thành lớp màng dày như
sứa, nhẵn, trơn, khi lắc chúng chìm xuống đáy bình và thay vào đó một lớp màng
mỏng mới lại tiếp tục phát triển. Dung dịch dưới màng bao giờ cũng trong suốt. Màng
này có chứa sợi cellulose giống như sợi bông. Loại thứ hai có màng mỏng như giấy
xelofan. Một số khác có màng không nhẵn mà nhăn nheo. Một số nữa tạo màng mỏng
dễ vỡ bám trên thành bình và dung dịch nuôi không trong [Đinh Thị Kim Nhung,
1996; Nguyễn Lân Dũng và ctv, 1975].
Hình 2.2: Vi khuẩn acetic [30; 35]
6
2.2.1.2 Đặc điểm sinh trƣởng
Nhu cầu dinh dưỡng của vi khuẩn acetic đối với các nguồn carbon, nitơ và các
chất sinh trưởng rất đa dạng. Chúng sử dụng đường, rượu và các acid hữu cơ làm
nguồn carbon, dùng muối amon làm nguồn nitơ [Phùng Lê Nhật Đông, Trần Kim
Thủy, 2003]
Vi khuẩn acetic không những oxy hoá được rượu etylic thành acid acetic mà
còn oxy hoá được rượu propylic thành acid propionic, rượu butylic thành acid butyric,
nhưng chúng không oxy hoá được rượu metylic và các rượu bậc cao khác. Trong môi
trường đủ rượu etylic (5 – 13%) thì sản phẩm tạo ra chủ yếu là acid acetic, còn nếu
nồng độ rượu thấp hơn thì các vi khuẩn acetic oxy hoá triệt để rượu thành CO2 và H2O
[Lương Đức Phẩm, 1998].
Vi khuẩn acetic có khả năng đồng hoá nhiều nguồn thức ăn carbon khác nhau
nhưng không sử dụng được tinh bột. Ngoài khả năng oxy hoá etanol thành acid acetic,
một số loài Acetobacter còn tổng hợp được vitamin B1, B2, oxy hoá được sorbit thành
đường sorbose – dùng trong công nghiệp sản xuất vitamin C, oxy hoá glycerin thành
dioxyaceton, glucose thành acid gluconic. Đa số các loài Acetobacter có khả năng
đồng hoá muối amon, khả năng phân giải pepton yếu.
Trong quá trình phát triển, vi khuẩn acetic có nhu cầu đối với một số acid amin
như acid pantothenic, valin, alanin, prolin …, một số chất kích thích sinh trưởng như p
– aminobenzoic, acid nicotinic, folic, biotin… và một số chất khoáng K, Ca, Mg, Fe,
S, P … ở dạng muối vô cơ hay hợp chất hữu cơ. Do đó, dịch tự phân nấm men, nước
mạch nha, nước trái cây… là nguồn dinh dưỡng rất tốt cho sự phát triển của
Acetobacter [Trần Phú Hòa, 1996].
Vi khuẩn acetic rất hiếu khí. Tốc độ sinh trưởng của chúng rất nhanh, từ 1 tế
bào sau 12 giờ có thể phát triển thành 17 triệu tế bào. Trong quá trình sinh trưởng và
phát triển, chúng tạo thành acid acetic và nồng độ acid thấp lại kích thích sự sinh
trưởng của chúng [Nguyễn Thị Cẩm Tú, 2003].
Nhiệt độ tối thích đối với sinh trưởng của các loài vi khuẩn acetic là 20 – 300C,
pH tối thích là 5,5 – 6,2. Chúng có tính chịu acid cao, một số loài vẫn phát triển được
ở pH = 3,2 [C.S. Pedeson, 1995].
7
2.2.1.3 Phân loại vi khuẩn acetic
Vi khuẩn acetic thuộc vào 2 giống chính:
Acetobacter : có chu mao hoặc không
Gluconobacter (còn gọi là Acetomonas) : đỉnh mao (đơn mao)
Acetobacter và Gluconobacter là 2 giống vi khuẩn acetic quan trọng nhất của họ
Acetobacteriaceae.
Gluconobacter không có chu trình ATC trong hoạt động tế bào nên không thể oxy
hoá acetat (nhưng có chu trình glyoxylat thay thế). Ngược lại, Acetobacter có khả
năng này [Đinh Thị Kim Nhung, 1996].
Những vi khuẩn này có nhiều điểm tương tự so với vi khuẩn thuộc giống
Pseudomonas. Chúng khác Pseudomonas ở chỗ chịu được độ acid cao hơn, khả năng
chuyển hóa pepton yếu, ít di động và không sinh sắc tố [Nguyễn Thị Cẩm Tú, 2003].
Bảng 2.1: Những đặc điểm phân biệt Acetobacter và Gluconobacter
(so sánh với Pseudomonas)
Đặc điểm Acetobacter Gluconobacter Pseudomonas
Tiên mao
Chu mao hoặc
không có
Đỉnh mao hoặc
không có
Đỉnh mao
Sinh trưởng ở pH = 4.5 + + -
Oxy hoá:
Etanol thành acid
acetic
Acid acetic thành CO2
Lactat thành CO2
Glucose thành
gluconat
+
-
-
+
+
-
+
+/-
-
+/-
+
+/-
Thủy phân tinh bột và
lactose
- - +/-
Phân giải gelatin - - +/-
Tạo sắc tố lục huỳnh quang - - +/-
8
Từ trước đến nay đã có nhiều tác giả đề cập đến vấn đề phân loại các loài vi khuẩn
trong giống Acetobacter (Rothenbach - 1989, Beijerinch - 1899, Hoyer - 1899, Hansen
- 1911, Janke - 1916, Vissert Hoft - 1925, Henneberg - 1926, Hermann - 1931,
Vaughm - 1948) nhưng đáng chú ý nhất là bảng phân loại Acetobacter của J – Frateur.
Năm 1950, Frateur đã chính thức đưa ra một khóa phân loại vi khuẩn Acetobacter dựa
trên các tính chất sinh hoá cụ thể sau:
Khả năng tạo catalase
Khả năng tổng hợp các chất ceto từ những rượu bậc cao như glycerol, mannitol,
sorbitol…
Khả năng oxy hóa acetat thành CO2 và H2O
Khả năng oxy hóa glucose thành acid gluconic
Khả năng sử dụng muối amon làm nguồn nitơ trong môi trường Hoyer và sử
dụng rượu etylic làm nguồn carbon
Khả năng tạo sắc tố nâu
Khả năng tổng hợp cellulose
Trên cơ sở này, Frateur đã chia vi khuẩn acetic thành 4 nhóm: suboxydans,
mesoxydans, oxydans, peroxydans.
Nhóm Suboxydans gồm các loài Acetobacter suboxydaz và Acetobacter
melanogennum.
Nhóm Mesoxydans gồm Acetobacter xylinum, Acetobacter aceti và
Acetobacter mesoxydans.
Nhóm Oxydans gồm các loài không có khả năng tạo các hợp chất ceto:
Acetobacter ascendans, Acetobacter ransens và Acetobacter lovaniens.
Nhóm Peroxydans gồm Acetobacter pezoxydans, Acetobacter paradoxum
không chứa catalase và không oxy hoá được glucose.
[Đinh Thị Kim Nhung, 1996]
9
Bảng 2.2: Những khác biệt giữa các loài Acetobacter
Đặc điểm tiên
mao
Chu mao Đỉnh mao
Giống Acetobacter
Glucono
bacter
Loài
a
ce
ti
xy
li
n
u
m
m
es
o
xy
-
d
a
n
s
lo
va
n
i
-
en
si
s
ra
n
ce
s
a
sc
en
-
d
en
s
p
er
o
xy
-
d
a
n
s
p
a
ra
-d
o
xu
m
oxydans
1. Oxy hóa tiếp
tục etanol thành
CO2 và H2O
+ + + + + + + + -
2. Catalase + + + + + + - - +
3. Sinh trưởng
trên môi trường
Hoyer
+ - - + - - + - -
4. Chuyển hóa
glucose thành
acid gluconic
+ + + + + - - - +
5. Chuyển hóa
glycerol thành
dihydroxy –
aceton
+ + + - - - - - +
6. Tổng hợp
cellulose
- + - - - - - - -
7. Tạo sắc tố nâu - - - - - - - - +
[Nguyễn Thị Cẩm Tú, 2003]
2.2.2 Vi khuẩn Acetobacter xylinum
Acetobacter xylinum thuộc nhóm vi khuẩn acetic. Quá trình lên men acetic
được coi là quá trình lên men dấm nhưng thực chất là một quá trình oxy hóa [Trần Phú
Hòa, 1996].
A. xylinum là loài vi khuẩn tạo được BC nhiều nhất trong tự nhiên. Một tế bào
A. xylinum có thể chuyển hoá 108 phân tử glucose thành cellulose trong 1 giờ [Brown
và ctv, 1976].
10
Theo khóa phân loại của Bergey, Acetobacter xylinum thuộc:
Lớp : Schizomycetes
Bộ : Pseudomonadales
Bộ phụ : Pseudomonadiace
Họ : Pseudomonadaceae
Giống : Acetobacter
[Trần Thị Ánh Tuyết, 2004]
2.2.2.1 Đặc điểm hình thái
Acetobacter xylinum có dạng hình que, thẳng hoặc hơi cong, kích thước khoảng
2 m thay đổi tùy loài. Các tế bào đứng riêng lẻ hay xếp thành chuỗi, có thể di động
hoặc không, không sinh bào tử, Gram âm nhưng Gram của chúng có thể bị thay đổi do
tế bào già đi hay do điều kiện môi trường. Là vi khuẩn hiếu khí bắt buộc, vì vậy chúng
tăng trưởng ở bề mặt tiếp xúc giữa môi trường lỏng và môi trường khí.
Khi phát triển trên môi trường nuôi cấy, các tế bào được bao bọc bởi chất nhầy
tạo thành váng nhăn khá dày, bắt màu xanh với thuốc nhuộm Iod và acid sulfuric (do
phản ứng của hemicellulose) [Phùng Lê Nhật Đông, Trần Kim Thủy, 2003].
Acetobacter xylinum có thể tích lũy 4,5% acid acetic, sinh trưởng ở pH thấp hơn
5. Acid acetic sinh ra do quá trình hoạt động của vi khuẩn, nhưng khi chúng sinh ra
quá mức giới hạn cho phép sẽ ức chế lại chính hoạt động của chúng.
Trên môi trường thiếu thức ăn hoặc môi trường đã nuôi cấy lâu, A. xylinum dễ
dàng sinh ra những tế bào có hình thái đặc biệt: tế bào có thể phình to hoặc kéo dài,
đôi khi lại có dạng phân nhánh [Trần Phú Hòa, 1996].
A. xylinum có khuẩn lạc nhỏ, tròn, bề mặt nhầy và trơn bóng, phần giữa khuẩn
lạc lồi lên, dày hơn và sẫm màu hơn các phần chung quanh, rìa mép khuẩn lạc nhẵn.
Sau 5 ngày nuôi cấy, đường kính khuẩn lạc đạt từ 2 – 5 mm.
Khi nuôi cấy trong môi trường thạch, lúc còn non, A. xylinum phát triển thành
từng tế bào riêng lẻ, nhầy và trong suốt. Khi già, các tế bào dính với nhau thành từng
cụm mọc theo đường cấy.
11
Trong môi trường lỏng, sau 24h nuôi cấy sẽ xuất hiện một lớp đục trên bề mặt,
phía dưới có những sợi tơ nhỏ hướng lên. Sau 36 – 48h, hình thành một lớp trong và
ngày càng dày [Lê Thị Khánh Vân, 1985].
Hình 2.3: Vi khuẩn Acetobacter xylinum [24; 31]
2.2.2.2 Đặc điểm sinh lí – sinh hoá
Acetobacter xylinum là vi sinh vật hiếu khí bắt buộc, cho phản ứng catalase
dương tính; có khả năng oxy hoá tiếp tục ethanol thành acid acetic CH3COOH, CO2 và
H2O; chuyển hoá được glucose thành acid, glycerol thành dihydroxyaceton; tổng hợp
được cellulose nhưng không có khả năng sinh trưởng trên môi trường Hoyer và không
tạo sắc tố nâu [Nguyễn Lân Dũng, 1978].
Theo Hestrin (1947), pH tối ưu để A. xylinum phát triển là 4,5 và nó không phát
triển ở 370C ngay cả trong môi trường dinh dưỡng tối ưu. Theo Bergey, nhiệt độ tối ưu
để A. xylinum phát triển là 25 – 300C. Còn theo Marcormide (1996) thì A. xylinum có
thể phát triển ở pH từ 3 – 8, nhiệt độ là 12 – 350C và nồng độ ethanol lên đến 10%
[Trần Thị Ánh Tuyết, 2004].
Nguồn carbohydrate mà A. xylinum sử dụng cho khả năng tạo sinh khối cao là
glucose, fructose, mannitol, sorbitol; hiệu suất sẽ thấp hơn khi sử dụng glycerol,
lactose, sucrose, maltose; và hiệu suất bằng 0 nếu sử dụng sorbose, mannose,
cellobiose, erythritol, ethanol và acetat [Julian a. Ba, 1990 - dẫn liệu của Phùng Lê
Nhật Đông, Trần Kim Thủy, 2003].
12
2.2.2.3 Chức năng sinh lí của cellulose đối với Acetobacter xylinum
Theo Costeron (1999), trong môi trường tự nhiên, vi khuẩn có khả năng tổng
hợp các polysaccharid ngoại bào để hình thành nên lớp vỏ bảo vệ bao quanh tế bào, và
màng BC là một ví dụ như thế. Hệ thống lưới polymer làm cho các tế bào có thể bám
chặt trên bề mặt môi trường và làm cho tế bào thu nhận chất dinh dưỡng dễ dàng hơn
so với khi tế bào ở trong môi trường lỏng không có mạng lưới cellulose. Một vài tác
giả cho rằng cellulose được tổng hợp bởi A. xylinum còn đóng vai trò tích trữ và có thể
được sử dụng khi vi sinh vật này thiếu nguồn dinh dưỡng. Sự phân hủy cellulose đuợc
xúc tác bởi enzyme exo – hay endo – glucanase, sự hiện diện cả hai loại enzyme này
được phát hiện trong dịch nuôi cấy một vài chủng A. xylinum.
Nhờ vào tính dẻo và tính thấm nước của lớp cellulose mà các tế bào vi khuẩn
kháng lại được những thay đổi không thuận lợi trong môi trường sống như giảm lượng
nước, thay đổi pH, xuất hiện các chất độc và các vi sinh vật gây bệnh. Có những ghi
nhận rằng cellulose bao quanh tế bào vi khuẩn bảo vệ chúng khỏi tia cực tím. Khoảng
23% số tế bào A. xylinum được bao bọc bởi BC sống sót sau 1giờ xử lí bằng tia cực
tím. Khi tách BC ra khỏi tế bào, khả năng sống của chúng giảm đáng kể, chỉ còn 3%
[theo Ross và ctv, 1993 - dẫn liệu của Trần Thị Ánh Tuyết, 2004].
2.3 Bacterial cellulose (BC)
2.3.1 Sơ lƣợc về lịch sử nghiên cứu sự hình thành BC
Sự tổng hợp lớp màng cellulose ngoại bào của vi khuẩn A. xylinum được nhà
bác học Brown báo cáo lần đầu tiên vào năm 1886. Tuy nhiên đến nửa sau thế kỉ XX,
các nhà khoa học mới thực sự nghiên cứu rộng rãi về BC.
Năm 1943 – 1954, Hestrin và các cộng sự nghiên cứu về khả năng tổng hợp BC
của vi khuẩn Acetobacter xylinum, họ chứng minh rằng A. xylinum có thể sử dụng
đường và O2 để tạo nên cellulose.
Năm 1957, Next và Colvin chứng minh rằng cellulose được A. xylinum tổng
hợp trong môi trường có đường và ATP. Càng ngày, cấu trúc của BC càng được hiểu
rõ theo tiến bộ của khoa học kĩ thuật.
13
Năm 1989, nhóm I.M. Saxena trường Đại học Texa thu nhận được enzyme
cellulose synthase tinh sạch của A. xylinum. Enzyme này gồm 2 chuỗi polypeptid có
trọng lượng phân tử là 83 và 93kD. Trong đó, tiểu phần 83kD liên quan đến quá trình
sinh tổng hợp cellulose tinh khiết. Năm 1990, nhóm đã xác định được gen tổng hợp
cellulose ở A. xylinum (dòng hoá và giải trình tự đoạn gen tổng hợp cellulose).
Ngày nay đã có rất nhiều công trình nghiên cứu giúp hiểu rõ thêm về cấu trúc,
cơ chế tổng hợp và ứng dụng của BC [Trương Thị Anh Đào, 2004].
2.3.2 Cấu trúc của BC
BC có cấu trúc hóa học tương tự như cấu trúc của cellulose thực vật (plant
cellulose - PC), là chuỗi polymer của các nhóm glucose liên kết với nhau qua cầu nối
- 1,4 – glucan. Các chuỗi đơn phân tử glucan liên kết với nhau bằng liên kết Van der
Waals. Qua nối hydro, các lớp đơn phân tử sẽ kết hợp với nhau tạo nên cấu trúc tiền
sợi với chiều rộng 1,5 nm. Các tiền sợi này sẽ kết hợp với nhau tạo thành dải có kích
thước từ 3 – 4 nm và chiều rộng 70 – 80 nm.
Theo Zaaz (1977) thì kích thước của dải là 3,2 x 133 nm; còn theo Brown và
cộng sự (1976) thì là 4,1 x 177 nm. So với PC thì BC có độ polymer hóa cao hơn và
kích thước nhỏ hơn, BC có độ polymer hóa từ 2000 – 6000, có trường hợp lên đến
16000 hay 20000. Trong khi đó, khả năng polymer hóa của PC chỉ từ 13000 – 14000
[dẫn liệu của Trần Thị Ánh Tuyết, 2004].
Hình 2.4: Cấu trúc BC và PC [26; 27]
14
Trong tự nhiên, cellulose kết tinh phổ biến ở dạng I và II. Cellulose I có thể
chuyển thành cellulose II nhưng cellulose II thì không thể chuyển ngược lại thành
cellulose I. Tùy thuộc vào điều kiện môi trường nuôi cấy mà cellulose dạng nào chiếm
ưu thế. Thông thường, dạng cellulose I được tổng hợp phổ biến hơn.
Cellulose I: dài 0,05 – 0,1 m; được tổng hợp bởi đa số thực vật và vi
khuẩn A. xylinum trong môi trường lên men tĩnh. Các chuỗi - 1,4 –
glucan xếp song song với nhau theo một trục.
Năm 1984, Atalla và V. Hart đã xác định được cấu trúc của cellulose I
và cellulose I cấu tạo bởi glucose dạng hay .
Cellulose II: được tổng hợp ở một số nấm mốc và vi khuẩn như
Sarcinaventriculi. Là dạng sợi cellulose ổn định nhất về nhiệt động lực
học, các chuỗi glucan xếp đối song nhau hay phân bố tự do. Cellulose II
thường được tổng hợp trong môi trường nuôi cấy lắc. Khi đó BC tạo ra ở
dạng huyền phù phân tán, các sợi cellulose thường uốn cong, đường kính
khoảng 0,1 – 0,2 m [Trương Thị Anh Đào, 2003; Fumihiro Y., 1997].
2.3.3 Đặc điểm của BC
A.J. Brown (1986), đã nghiên cứu lớp màng đặc do vi khuẩn A.xylinum tạo ra
trên môi trường lên men và thấy có bản chất là hemicellulose. Hemicellulose là những
polysaccharid không tan trong nước nhưng tan trong dung dịch kiềm tính.
Một số tính chất của BC:
Độ tinh sạch: độ tinh sạch tốt hơn rất nhiều so với các cellulose khác, có
thể phân hủy sinh học, tái chế hay phục hồi hoàn toàn.
Độ bền cơ học: có độ bền tinh thể cao, sức căng lớn, trọng lượng thấp, ổn
định về kích thước và hướng (đặc biệt là cellulose I)
Tính hút nước: có khả năng giữ nước đáng kể (lên đến 99%), có tính xốp,
ẩm độ cao, có thể chịu được một thể tích đáng kể trên bề mặt (lực bền cơ
học cao).
[Trần Thị Diễm Chi, 2000]; [25]; [32]
15
2.3.4 Quá trình sinh tổng hợp BC từ vi khuẩn A. xylinum
Khi nuôi cấy vi khuẩn A. xylinum trong môi trường có nguồn dinh dưỡng đầy
đủ (chủ yếu là carbohydrate, vitamin B1, B2, B12… và các chất kích thích sinh trưởng),
chúng sẽ thực hiện quá trình trao đổi chất của mình bằng cách hấp thụ dinh dưỡng từ
môi trường bên ngoài vào cơ thể, một phần để cơ thể sinh trưởng và phát triển, một
phần để tổng hợp cellulose và thải ra môi trường. Ta thấy các sợi tơ nhỏ phát triển
ngày càng dài hướng từ đáy lên bề mặt trong môi trường nuôi cấy [Đinh Thị Kim
Nhung, 1996]
Thiaman (1962) đã giải thích cách tạo thành cellulose như sau: các tế bào
A. xylinum khi sống trong môi trường lỏng sẽ thực hiện quá trình trao đổi chất của
mình bằng cách hấp thụ đường glucose, kết hợp đường với acid béo để tạo thành tiền
chất nằm ở màng tế bào. Tiền chất này được tiết ra ngoài nhờ hệ thống lỗ nằm ở trên
màng tế bào cùng với một enzyme có thể polymer hóa glucose thành cellulose [J. A.
Bazon, 1984 - dẫn liệu của Đinh Thị Kim Nhung, 1996].
Hình 2.5: Con đƣờng dự đoán quá trình sinh tổng hợp cellulose trong tế
bào vi khuẩn Acetobacter xylinum [Trần Thị Ánh Tuyết, 2004]
Tương tự như các thực vật thượng đẳng, vi sinh vật có khả năng tổng hợp các
oligo và polysaccharid nội bào, lượng oligo và polysaccharid nội bào đạt tới 60% khối
lượng khô tế bào, còn polysaccharid ngoại bào có thể vượt nhiều lần khối lượng của vi
sinh vật. Thành tế bào cũng chứa một lượng lớn polysaccharid. Tất cả các oligo và
16
polysaccharid được tổng hợp bằng cách thêm một đơn vị monosaccharid vào chuỗi
saccharid có trước. Đơn vị monosaccharid tham gia phản ứng dưới dạng nucleotid,
monosaccharid được hoạt hóa thường là dẫn xuất của uridin – diphosphat (UDP – X)
nhưng đôi khi là các nucleotid purin và pyrimidin khác. Sự tổng hợp diễn ra theo phản
ứng chung sau:
…X-X-X-X + UDP-X = …X-X-X-X-X + UDP
n nhánh (n + 1) nhánh
Trong trường hợp polysaccharid gồm 2 loại monosaccharid liên tiếp (X và Y)
thì phản ứng chung xảy ra theo 2 bước sau:
Bước 1: XYXYXYXY + UDP-X = XYXYXYXYX + UDP
Bước 2: XYXYXYXYX + UDP-Y = XYXYXYXYXY + UDP
Cơ chế của quá trình tổng hợp các loại polysaccharid phân nhánh hiện nay vẫn
còn chưa rõ. Người ta cho rằng thứ tự các gốc đường và tính đặc trưng tham gia của
chúng vào chuỗi polysaccharid phụ thuộc vào các loại enzyme transferase [Nguyễn
Lân Dũng, Phạm Văn Ty, Nguyễn Đình Quyến, 1980].
Cellulose
UDPG Glc
UGP GHK G6PD
(NAD)
G1P G6P PGA
G6PD
PGI (NADP) Chu trình
Pentose
Frc F6P phosphate
PTS FBD
F1P FDP EMP TCA
Hình 2.6: Cơ chế sinh tổng hợp cellulose của A.xylinum
PGM
FHK
1PFK
17
Glc: glucose UDPG: uridin diphosphate glucose
GHK: glucose hexokinase UGP:uridin glucose pyrophosphorylase
G6PD: glucose – 6 – phosphate PGM: phosphoglucomutas
G1P: glucose – 1 – phosphate G6P: glucose – 6 – phosphate
PGI: phosphoglucose isomerase FHK: fructose hexokinase
Frc: fructose F6P: fructose – 6 – phosphate
PGA: phosphogluconic acid PTS: phosphotransfer system
F1P: fructose – 1 – phosphate 1PFK: fructose – 1 phosphate kinase
FDP:fructose – 1,6 – diphosphate dehydrogenase
2.3.5 Ứng dụng của BC
Dựa vào những đặc tính ưu việt mà BC có nhiều ứng dụng trong các lĩnh vực:
Thực phẩm: - Thức ăn tráng miệng (thạch dừa, cocktail,
Kombucha, trà Manchurian…)
- Các loại bánh snack, kẹo có năng lượng thấp
- Chất làm đặc để bổ sung trong kem, dầu trộn salad
- Màng bao thực phẩm, màng bảo quản trái cây
- Chất ổn định thực phẩm
Y tế: - Chất thay thế da tạm thời (da nhân tạo)
- Bột cellulose ứng dụng làm tá dược trong bào
chế viên nén
- Băng gạc, băng trị phỏng
Mỹ phẩm: - Ổn định kem dưỡng da
- Chất làm se (astringent)
- Chất làm đặc và làm chắc trong thuốc sơn
móng tay
Môi trường: - Làm miếng bọt để xử lí sạch các vết dầu tràn
- Hấp thu và loại bỏ những nguyên vật liệu độc
18
Xăng dầu và than đá: - Phát hiện và thu hồi các mỏ khoáng, dầu
Công nghiệp dệt: - Sợi nhân tạo cao cấp
- Các loại lều, bạt, tã lót có thể vứt đi hay tái sử dụng
Công nghiệp giấy: - Làm giấy cao cấp (có độ dai, độ bền cao, vì vậy
ứng dụng làm giấy lưu trữ tài liệu, làm tiền, giấy
vẽ…)
Công nghiệp gỗ: - Ván mỏng nhân tạo (plywood laminate)
- Chất tạo độ dai cho giấy, container
Công nghiệp máy: - Chế tạo thân xe hơi, các thành tố cấu trúc máy
bay, tên lửa…
- Màng siêu âm thanh
- Thiết bị siêu lọc nước
- Màng thẩm thấu 2 chiều
[Trần Thị ÁnhTuyết, 2004]; [32]
2.4 Thành phần nguyên liệu sử dụng trong sản xuất BC
2.4.1 Nƣớc dừa già
Hiện nay tại Việt Nam và một số quốc gia, nguồn nguyên liệu chính để sản xuất
thạch dừa là nước dừa. Tùy theo giống dừa, tuổi của quả dừa mà các thành phần hoá
học trong nước dừa có khác nhau. Lượng đường khử tổng và protein trong nước dừa
tăng lên khi dừa càng chín (cao nhất là vào tháng thứ 9, sau đó giảm dần). Đường ở
đây có thể là glucose, fructose, sucrose hay sorbitol.
19
Bảng 2.3: Lƣợng đƣờng khử và protein có trong nƣớc dừa vào các giai đoạn khác
nhau [Angaido và ctv, 1985]
Tuổi
(tháng)
Đƣờng khử tổng
(g/100g)
Protein
(g/100ml)
4
5
6
7
8
9
10
2,20
2,25
2,39
2,56
2,63
2,89
2,79
0,140
0,210
0,262
0,356
0,504
0,512
0,512
Bergonia và ctv (1984) đã phân tích thành phần carbohydrate trong nước dừa
bằng HPLC, thấy:
Nồng độ tổng của sucrose, glucose, fructose 3,0 3 gr/100ml
mannose, galactose 2.23gr/100ml
mannitol 0.3gr/100ml
nồng độ đường tổng 5,15 gr/100ml
Ngoài ra, trong nước dừa già còn chứa nhiều vitamin, acid amin, chất kích thích
sinh trưởng… rất tốt đối với sự phát triển của A. xylinum.
20
Bảng 2.4: Thành phần hoá học của nƣớc dừa già
[Anzaldo và ctv, 1985]
Thành phần % khối lƣợng
Tỷ trọng
Chất rắn tổng số
Đường tổng số
Tro
Dầu béo
Protein
Clorua
pH
Nước
1,02
4,71
2,56
0,46
0,74
0,55
0,17
5,60
90,81
Bảng 2.5: Hàm lƣợng vitamin và chất khoáng trong nƣớc dừa
[ Vanderberlt, 1945; Trần Phú Hòa, 1996]
Vitamin
Hàm lƣợng
( g/ml)
Khoáng vi lƣợng
Hàm lƣợng
( g/ml)
Acid ascorbic
Acid nicotinic
Acid pantothenic
Acid folic
Biotin
Riboflavin
Thiamine
Pyridoxine
2200 – 3700
0,64
0,52
0,003
0,02
0,01
dạng vết (trace)
dạng vết (trace)
K
Na
Ca
Mg
Fe
Cu
S
P
3,12
1,50
2,09
3,00
0,01
0,04
3,40
3,70
21
Bảng 2.6: Hàm lƣợng acid amin trong nƣớc dừa
[Phùng Lê Nhật Đông, Trần Kim Thủy, 2003]
Acid amin
Hàm lƣợng
(% khối lượng/amin
tổng số)
Acid amin
Hàm lƣợng
(% khối lượng/amin
tổng số)
Acid cysteric
Acid aspartic
Acid glutamic
Xerin
Glycerin
Threonin
Alanin
3,86
2,94
12,47
3,25
7,61
1,07
1,41
Histidin
Lysin
Arginin
Prolin
Valin
Leucin
Phenylalanin
7,86
11,23
3,40
8,57
1,28
3,85
0,18
Ngoài ra, trong nước dừa còn có một số chất kích thích sinh trưởng như
1,3 – diphenyl urea, hexitol, phyllococosine, ribosid, myo-imisitol, sorbitol,
cylleinositol, zeatin … Hoạt tính chung của nước dừa là do tác dụng tổng hợp của từng
loại hợp chất có trong nước dừa. Các chất này tương đối chịu nhiệt, vì vậy nước dừa
còn phát huy được tác dụng tốt sau chế độ thanh trùng [Lê Thị Khánh Vân, 1985 - dẫn
liệu của Trần Thị Ánh Tuyết, 2004].
2.4.2 Nƣớc cốt dừa
Có những vùng miền do đặc tính địa lí nên không có đủ nước dừa để sản xuất
thạch dừa, và công việc vận chuyển nước dừa cũng gặp rất nhiều khó khăn, nhất là khi
sản xuất với quy mô lớn. Vì vậy, người ta có thể sử dụng nước cốt vắt ra từ cơm dừa
để làm môi trường lên men.
Nước cốt dừa rất giàu chất béo, carbohydrate và protein. Các protein cơm dừa
có giá trị dinh dưỡng cao, nhiều lysine, methionine và tryptophan.
22
Bảng 2.7: Thành phần hóa học của cơm dừa
Thành phần
(%)
Hạch cơm dừa chƣa
chín
Hạch cơm dừa chín
Độ ẩm
Protein
Chất béo
Carbohydrate
Xơ thô
Tro
90,80
0,90
1,40
6,30
0,60
46,30
4,08
37,29
11,29
3,39
1,03
Bảng 2.8: Thành phần các vitamin trong nƣớc cốt dừa
Vitamin Hàm lƣợng ( g/ml)
Niacine
Acid pantothenic
Biotine
Riboflavin
Acid folic
0,64
0,52
0,02
0,01
0,003
[Subtahmanyan & Swammatha, 1969]
Bảng 2.9: Thành phần hóa học của nƣớc cốt dừa
Thành phần Hàm lƣợng (%)
Theo Hagenmaire (1980) Theo Thampan (1975)
Độ ẩm
Chất béo
Protein
Tro
Carbohydrate
56,3
33,4
4,1
1,2
5,0
52,0
38,0
3,5
0,9
5,6
23
Nước cốt dừa được vắt lần đầu tiên có pH = 6, vì vậy nó được xếp vào loại thực
phẩm có nồng độ acid thấp.
Dừa để vắt lấy nước cốt thì nên chín hoàn toàn (12 tháng), càng chín nẫu càng
tốt. Lúc này, dừa đã phát triển tối đa, cho lượng nước ít, còn cơm dừa thì cứng và dày.
2.4.3 Nƣớc dứa
Bảng 2.10: Thành phần hóa học của nƣớc dứa [33; 34]
Thành phần Hàm lƣợng (tính trên 100g)
Calories (kcal)
Protein (g)
Lipid (g)
Glucid (g)
CHO tổng (g)
CHO xơ (g)
Tro (mg)
Nước (g)
47 – 54
0,4 – 0,7
0,0 – 0,3
11,6 – 13,7
12,39
0,4 – 0,54
0,29 – 0,4
85,3 – 86,5
Bảng 2.11: Hàm lƣợng vitamin và khoáng chất trong nƣớc dứa [28; 33; 34]
Thành phần
vitamin
Hàm lƣợng
(mg/100g)
Thành phần
khoáng
Hàm lƣợng
(mg/100g)
- Caroten
Thiamin
Riboflavin
Niacin
Acid ascorbic
32 – 42
0,06 – 0,08
0,03 – 0,04
0,2 – 0,3
17 – 61
Na
K
Ca
P
Fe
1 – 2
113 – 146
7 – 18
7 – 12
0,37 – 0,5
24
Bảng 2.12: Hàm lƣợng acid amin trong nƣớc dứa [36]
Amino acid
Hàm lƣợng
(% khối lƣợng/amin
tổng số)
Amino acid
Hàm lƣợng
(% khối lƣợng/amin
tổng số)
Alanine
Arginine
Asparagine
Aspartic acid
Cystein
Glutamine
Glutamic acid
Glycerin
Histidin
Isoleucine
5,60
2,06
7,96
7,96
0,88
3,54
5,31
8,26
0,88
4,42
Leucine
Lysine
Methionine
Phenyl alanine
Proline
Serine
Threonine
Tryptophan
Tyrosine
Valine
5,60
6,49
3,54
5,31
3,83
6,19
5,31
4,42
7,37
5,01
25
Chƣơng 3. VẬT LIỆU VÀ PHƢƠNG PHÁP
THÍ NGHIỆM
3.1 Thời gian và địa điểm thực hiện
Thời gian: đề tài được tiến hành từ 03/2005 đến 08/2005.
Địa điểm: đề tài được thực hiện tại phòng thí nghiệm vi sinh, khoa Công nghệ thực
phẩm, trường ĐH Nông Lâm TP.HCM
3.2 Vật liệu – hoá chất – trang thiết bị
3.2.1 Vật liệu
3.2.1.1 Nguồn giống
Giống vi khuẩn Acetobacter xylinum do phòng thí nghiệm vi sinh khoa Công
nghệ thực phẩm cung cấp
3.2.1.2 Nguyên liệu
- Nước dừa: lấy từ trái dừa già
- Nước cốt dừa: vắt từ cơm dừa, sau đó pha loãng theo các tỷ lệ
- Nước dứa: ép lấy nước cốt dứa từ phần cùi dứa, sau đó pha loãng theo các tỷ lệ khác
nhau
3.2.2 Hoá chất
- Nhóm hoá chất bổ sung vào môi trường: DAP (diamonium phosphate)
SA (sulphate amon)
Saccharose
Agar
Acid acetic
Cao nấm men
- Hoá chất nhuộm Gram
26
3.2.3 Trang thiết bị
Một số trang thiết bị và dụng cụ của phòng thí nghiệm vi sinh: nồi hấp
autoclave, tủ cấy vô trùng, kính hiển vi, tủ sấy, cân điện tử, các dụng cụ thủy tinh, hộp
nhựa…
3.3 Môi trƣờng dinh dƣỡng
3.3.1 Môi trƣờng I: môi trường hoạt hóa
Nước dừa già 1lít
Saccharose 50g
SA 8g
DAP 2g
Cao nấm men 10g
Acid acetic 5ml
3.3.2 Môi trƣờng II: môi trường nhân giống và giữ giống
Nước dừa già 1lít
Saccharose 20g
SA 8g
DAP 2g
Acid acetic 12ml
Chế độ khử trùng của môi trường hoạt hóa và môi trường nhân giống là 1210C,
1atm, 15 phút. Acid acetic được bổ sung sau khi nấu sôi môi trường.
3.3.3 Môi trƣờng thí nghiệm
- Môi trường III: môi trường nước cốt dừa
- Môi trường IV: môi trường nước dứa
27
3.4 Nội dung và phƣơng pháp thí nghiệm
3.4.1 Thuần khiết giống và nhân giống đã thuần khiết
Mục đích thí nghiệm: tạo ra đủ giống thuần khiết cung cấp cho quá trình lên men.
Phương pháp: Từ giống chai sẵn có ở phòng thí nghiệm, tiến hành phân lập lại trên
môi trường thạch đĩa (công thức môi trường I + 2 % agar). Tìm các khuẩn lạc điển
hình của vi khuẩn A. xylinum, cấy chuyền nhiều lần để thu được khuẩn lạc thuần khiết
(quan sát đại thể).
Sau khi có khuẩn lạc thuần khiết, tiến hành nhuộm Gram, quan sát ở vật
kính X100 nhằm quan sát hình thái và cách sắp xếp tế bào (quan sát vi thể).
Sơ đồ nhân giống:
Giống thuần khiết Nhân giống cấp 1 5% thể tích Nhân giống cấp 2
(Trong môi trường (môi trường II (môi trường II trong
thạch đĩa) trong ống nghiệm) chai nước biển)
3.4.2 So sánh hiệu quả hoạt hóa giống bằng môi trƣờng I và môi trƣờng I có bổ
sung dung dịch Skeggs & Wright
Mục đích thí nghiệm: đánh giá xem môi trường nào giúp hoạt hóa giống tốt hơn
Bố trí thí nghiệm: thí nghiệm hoàn toàn ngẫu nhiên 1 yếu tố với 3 lần lặp lại.
Nghiệm thức NT1 NT2
Trọng lƣợng BC thô (g)
NT1: theo thành phần môi trường I
NT2: môi trường I có bổ sung dung dịch Skeggs & Wright
Dung dịch Skeggs & Wright: MgSO4.7H2O 40g
MnSO4.4H2O 2g
FeCl3 0,4g
HClđ 1ml
H2O đến 1lít
Chỉ tiêu theo dõi: trọng lượng BC thô (g) sau 8 ngày lên men ở nhiệt độ phòng.
28
3.4.3 Khảo sát sự hình thành BC trên môi trƣờng nƣớc cốt dừa
Mục đích thí nghiệm: tìm hiểu sự tương tác giữa các thành phần bổ sung (đường,
khoáng) vào môi trường lên men đến trọng lượng BC thô, từ đó suy ra công thức tối
ưu nhất cho việc sản xuất BC trên môi trường nước cốt dừa.
Bố trí thí nghiệm: thí nghiệm kiểu khối đầy đủ ngẫu nhiên 4 yếu tố với 2 lần lặp lại
Yếu tố
Tỉ lệ cơm
dừa/nƣớc (g/ml)
DAP
(%)
SA
(%)
Sacccharose
(%)
Nồng độ
1/10
1/20
1/30
0,2
0,4
0,6
0,6
0,8
1,0
2
4
6
MT
TLPL
(lần)
DAP
(%)
SA
(%)
Sac
(%)
MT
TLPL
(lần)
DAP
(%)
SA
(%)
Sac
(%)
MT
TLPL
(lần)
DAP
(%)
SA
(%)
Sac
(%)
1 10 0,2 0,6 2 28 20 0,2 0,6 2 55 30 0,2 0,6 2
2 10 0,2 0,6 4 29 20 0,2 0,6 4 56 30 0,2 0,6 4
3 10 0,2 0,6 6 30 20 0,2 0,6 6 57 30 0,2 0,6 6
4 10 0,2 0,8 2 31 20 0,2 0,8 2 58 30 0,2 0,8 2
5 10 0,2 0,8 4 32 20 0,2 0,8 4 59 30 0,2 0,8 4
6 10 0,2 0,8 6 33 20 0,2 0,8 6 60 30 0,2 0,8 6
7 10 0,2 1 2 34 20 0,2 1 2 61 30 0,2 1 2
8 10 0,2 1 4 35 20 0,2 1 4 62 30 0,2 1 4
9 10 0,2 1 6 36 20 0,2 1 6 63 30 0,2 1 6
10 10 0,4 0,6 2 37 20 0,4 0,6 2 64 30 0,4 0,6 2
11 10 0,4 0,6 4 38 20 0,4 0,6 4 65 30 0,4 0,6 4
12 10 0,4 0,6 6 39 20 0,4 0,6 6 66 30 0,4 0,6 6
13 10 0,4 0,8 2 40 20 0,4 0,8 2 67 30 0,4 0,8 2
14 10 0,4 0,8 4 41 20 0,4 0,8 4 68 30 0,4 0,8 4
15 10 0,4 0,8 6 42 20 0,4 0,8 6 69 30 0,4 0,8 6
16 10 0,4 1 2 43 20 0,4 1 2 70 30 0,4 1 2
17 10 0,4 1 4 44 20 0,4 1 4 71 30 0,4 1 4
18 10 0,4 1 6 45 20 0,4 1 6 72 30 0,4 1 6
19 10 0,6 0,6 2 46 20 0,6 0,6 2 73 30 0,6 0,6 2
20 10 0,6 0,6 4 47 20 0,6 0,6 4 74 30 0,6 0,6 4
21 10 0,6 0,6 6 48 20 0,6 0,6 6 75 30 0,6 0,6 6
22 10 0,6 0,8 2 49 20 0,6 0,8 2 76 30 0,6 0,8 2
23 10 0,6 0,8 4 50 20 0,6 0,8 4 77 30 0,6 0,8 4
24 10 0,6 0,8 6 51 20 0,6 0,8 6 78 30 0,6 0,8 6
25 10 0,6 1 2 52 20 0,6 1 2 79 30 0,6 1 2
26 10 0,6 1 4 53 20 0,6 1 4 80 30 0,6 1 4
27 10 0,6 1 6 54 20 0,6 1 6 81 30 0,6 1 6
29
Ghi chú: MT: môi trường
TLPL: tỷ lệ pha loãng
Sac : saccharose
Đối chứng là môi trường II. Tỷ lệ giống cấp 2 cấy vào môi trường là 10%. Hàm lượng
acid acetic là 1,2 %. Thời gian lên men là 8 ngày ở nhiệt độ phòng.
Chỉ tiêu theo dõi: trọng lượng BC thô (g)
3.4.4 Khảo sát sự hình thành BC trên môi trƣờng nƣớc dứa
Mục đích thí nghiệm: tìm công thức tối ưu nhất cho việc sản xuất BC trên môi trường
nước dứa.
Bố trí thí nghiệm: thí nghiệm kiểu khối đầy đủ ngẫu nhiên 4 yếu tố với 2 lần lặp lại
Yếu tố
Tỉ lệ nƣớc
dứa/nƣớc
(g/ml)
DAP
(%)
SA
(%)
Saccharose
(%)
Nồng độ
1/10
1/20
1/30
0,2
0,4
0,6
0,6
0,8
1,0
2
4
6
MT
TLPL
(lần)
DAP
(%)
SA
(%)
Sac
(%)
MT
TLPL
(lần)
DAP
(%)
SA
(%)
Sac
(%)
MT
TLPL
(lần)
DAP
(%)
SA
(%)
Sac
(%)
1 10 0,2 0,6 2 28 20 0,2 0,6 2 55 30 0,2 0,6 2
2 10 0,2 0,6 4 29 20 0,2 0,6 4 56 30 0,2 0,6 4
3 10 0,2 0,6 6 30 20 0,2 0,6 6 57 30 0,2 0,6 6
4 10 0,2 0,8 2 31 20 0,2 0,8 2 58 30 0,2 0,8 2
5 10 0,2 0,8 4 32 20 0,2 0,8 4 59 30 0,2 0,8 4
6 10 0,2 0,8 6 33 20 0,2 0,8 6 60 30 0,2 0,8 6
7 10 0,2 1 2 34 20 0,2 1 2 61 30 0,2 1 2
8 10 0,2 1 4 35 20 0,2 1 4 62 30 0,2 1 4
9 10 0,2 1 6 36 20 0,2 1 6 63 30 0,2 1 6
10 10 0,4 0,6 2 37 20 0,4 0,6 2 64 30 0,4 0,6 2
11 10 0,4 0,6 4 38 20 0,4 0,6 4 65 30 0,4 0,6 4
12 10 0,4 0,6 6 39 20 0,4 0,6 6 66 30 0,4 0,6 6
13 10 0,4 0,8 2 40 20 0,4 0,8 2 67 30 0,4 0,8 2
14 10 0,4 0,8 4 41 20 0,4 0,8 4 68 30 0,4 0,8 4
15 10 0,4 0,8 6 42 20 0,4 0,8 6 69 30 0,4 0,8 6
16 10 0,4 1 2 43 20 0,4 1 2 70 30 0,4 1 2
30
17 10 0,4 1 4 44 20 0,4 1 4 71 30 0,4 1 4
18 10 0,4 1 6 45 20 0,4 1 6 72 30 0,4 1 6
19 10 0,6 0,6 2 46 20 0,6 0,6 2 73 30 0,6 0,6 2
20 10 0,6 0,6 4 47 20 0,6 0,6 4 74 30 0,6 0,6 4
21 10 0,6 0,6 6 48 20 0,6 0,6 6 75 30 0,6 0,6 6
22 10 0,6 0,8 2 49 20 0,6 0,8 2 76 30 0,6 0,8 2
23 10 0,6 0,8 4 50 20 0,6 0,8 4 77 30 0,6 0,8 4
24 10 0,6 0,8 6 51 20 0,6 0,8 6 78 30 0,6 0,8 6
25 10 0,6 1 2 52 20 0,6 1 2 79 30 0,6 1 2
26 10 0,6 1 4 53 20 0,6 1 4 80 30 0,6 1 4
27 10 0,6 1 6 54 20 0,6 1 6 81 30 0,6 1 6
Ghi chú: MT: môi trường
TLPL: tỷ lệ pha loãng
Sac : saccharose
Đối chứng là môi trường II. Tỷ lệ giống cấp 2 cấy vào môi trường là 10 %. Hàm lượng
acid acetic là 1,2 %. Thời gian lên men là 8 ngày ở nhiệt độ phòng.
Chỉ tiêu theo dõi: trọng lượng BC thô (g)
3.4.5 So sánh sinh khối BC thô thu hoạch từ môi trƣờng nƣớc dừa, nƣớc cốt dừa
và nƣớc dứa.
Mục đích thí nghiệm: so sánh khả năng tạo sinh khối BC thô từ các môi trường thay
thế với môi trường nước dừa già truyền thống để ứng dụng sản xuất ở quy mô rộng rãi
hơn, công nghiệp hơn.
Bố trí thí nghiệm: thí nghiệm hoàn toàn ngẫu nhiên 1 yếu tố với 3 lần lặp lại
Nghiệm thức NT1 NT2 ĐC
Trọng lƣợng
BC thô (g)
NT1: môi trường nước cốt dừa theo kết quả mục 3.4.3
NT2: môi trường nước dứa theo kết quả mục 3.4.4
ĐC : môi trường nước dừa theo thành phần môi trường II
Tỷ lệ giống cấy vào môi trường: 10 %
Hàm lượng acid acetic: 1,2 %
31
Thời gian lên men: 8 ngày ở nhiệt độ phòng
Chỉ tiêu theo dõi: trọng lượng BC thô (g)
3.4.6 Khảo sát ảnh hƣởng của các loại acid đến quá trình lên men tạo BC
Mục đích thí nghiệm: đa dạng hóa các loại acid bổ sung để lên men tạo BC.
Bố trí thí nghiệm: thí nghiệm hoàn toàn ngẫu nhiên 1 yếu tố với 3 lần lặp lại
Nghiệm thức NT 1 NT 2 NT 3
Trọng lƣợng
BC thô (g)
NT1: bổ sung HCl đến pH = 4,5
NT2: bổ sung H2SO4 đến pH = 4,5
ĐC : bổ sung acid acetic đến pH = 4,5
Các thành phần khác cố định theo môi trường II.
Tỷ lệ giống cấy vào môi trường là 10%, lên men 8 ngày ở nhiệt độ phòng.
Chỉ tiêu theo dõi: trọng lượng BC thô (g)
3.4.7 Các phƣơng pháp đánh giá
3.4.7.1 Xử lí thống kê
Từ trọng lượng BC thô thu hoạch được sau các thí nghiệm, tiến hành xử lí
thống kê bằng phần mềm Stagraphic 7.0.
3.4.7.2 So sánh giá trị kinh tế giữa các môi trƣờng lên men sản xuất BC
Sau khi tìm được công thức tối ưu để lên men sản xuất thạch dừa trên các môi
trường thay thế, tiến hành so sánh giá trị kinh tế của các loại nguyên liệu làm môi
trường lên men theo những tỷ lệ pha loãng thích hợp với môi trường lên men truyền
thống là nước dừa già. Đơn vị tính là trên 100 lít môi trường.
32
Chƣơng 4. KẾT QUẢ VÀ THẢO LUẬN
4.1 Thuần khiết giống và nhân giống đã thuần khiết
Từ giống chai A. xylinum ở phòng thí nghiệm, tiến hành phân lập lại trên môi
trường thạch đĩa. Kết quả quan sát đại thể và vi thể như sau:
4.1.1 Quan sát đại thể
Sau khi phân lập, mỗi tế bào tách riêng rẽ sẽ phát triển thành một khuẩn lạc.
Các khuẩn lạc có dạng tròn lồi, nhầy và trơn bóng, rìa mép khuẩn lạc nhẵn, màu trắng
trong hơi đục. Sau 5 ngày nuôi cấy, đường kính khuẩn lạc đạt 2-5 mm .
4.1.2 Quan sát vi thể
Sau khi chọn khuẩn lạc điển hình, tiến hành nhuộm Gram, quan sát tế bào vi
khuẩn ở vật kính X100 dưới giọt dầu cerde thu được kết quả như sau:
Bảng 4.1: Kết quả quan sát vi thể Acetobacter xylinum
Chỉ tiêu Kết quả
Hình dạng
Kích thước
Nhuộm Gram
Hình que, xếp riêng lẻ hoặc thành chuỗi dài
2– 4 m
Gram âm (G-)
33
Hình 4.1: Quan sát đại thể và vi thể vi khuẩn A. xylinum
Hình 4.2: Giống A. xylinum cấp I và cấp II
Như vậy từ giống chai sẵn có chúng tôi đã thuần khuyết được giống A. xylinum
và tiến hành giữ giống trong môi trường lỏng (môi trường II)
4.2 So sánh hiệu quả hoạt hoá giống bằng môi trƣờng I và môi trƣờng I có bổ
sung dung dịch Skeggs & Wright
Giống giữ vai trò quyết định đến năng suất lên men. Vì vậy, hoạt hóa giống sau
một thời gian dài bảo quản là công việc hết sức quan trọng. Môi trường hoạt hóa sao
cho tiện dụng, rẻ, đem lại hiệu quả cao là vấn đề đặt ra.
34
Kết quả thí nghiệm được trình bày ở bảng 4.2 và hình 4.3
Bảng 4.2: So sánh sinh khối BC thô giữa môi trƣờng I và môi trƣờng I có
bổ sung dung dịch Skeggs & Wright
Môi trƣờng Môi trƣờng 1
Môi trƣờng I có bổ sung
dung dịch Skeggs & Wright
Trung bình trọng lượng
BC thô (g)
111,4 114,2
Hình 4.3: Biểu đồ so sánh trọng lƣợng BC thô giữa 2 môi trƣờng
Qua bảng kết quả 4.2 và hình 4.3 chúng tôi thấy sinh khối BC thô tạo ra bởi vi
khuẩn A. xylinum sau quá trình hoạt hóa bởi 2 loại môi trường là tương đương nhau,
không có sự khác biệt ý nghĩa về mặt thống kê (trắc nghiệm F, độ tin cậy 95 % - phụ
lục 1).
Việc bổ sung thêm dung dịch Skeggs & Wright là nhằm cung cấp thêm các loại
muối khoáng, các thành phần vô cơ để kích thích sự phát triển của A. xylinum. Nhưng
kết quả cho thấy rằng không có sự gia tăng đáng kể về trọng lượng BC. Có nghĩa là
lượng khoáng chất trong nước dừa (môi trường I) đã đủ cho sự sinh trưởng và phát
triển của A. xylinum, không cần phải bổ sung thêm, giúp tiết kiệm chi phí sản xuất.
111.4 114.2
0
50
100
150
NT1 NT2
Nghiệm thức
Tr
ọn
g
lư
ợn
g
BC
(g
)
35
4.3 Khảo sát sự hình thành BC trên môi trƣờng nƣớc cốt dừa
Bảng 4.3: Kết quả sinh khối BC thô thu đƣợc từ các môi trƣờng (g)
Qua bảng kết quả 4.3 và qua xử lí thống kê bằng trắc nghiệm F, xác suất p <<
0.05 (phụ lục 2), chúng tôi thấy rằng cả 4 yếu tố tỷ lệ pha loãng, DAP, SA và
saccharose đều có tương tác với nhau. Công thức môi trường số 21, 24, 27 cho trọng
lượng BC cao hơn hẳn so với các công thức môi trường khác, khác biệt này là rất có ý
nghĩa về phương diện thống kê học. Tuy nhiên, khác biệt về trọng lượng BC thô giữa 3
môi trường 21, 24 và 27 không có ý nghĩa về mặt thống kê (độ tin cậy 95%).
Tỷ lệ cơm dừa/nước = 1/10 cho trọng lượng BC cao nhất, khác biệt này có ý
nghĩa thống kê so với các tỷ lệ pha loãng 1/20 và 1/30.
MT
Đợt 1
Đợt 2
TB
MT
Đợt 1
Đợt 2
TB
MT
Đợt 1
Đợt 2
TB
1 81.7 97.1 89.4 28 72.2 70.5 71.4 55 63 62.6 62.8
2 89.5 95.1 92.3 29 78.9 79.2 79.1 56 72.2 68.2 70.2
3 90.1 91.3 90.7 30 77.3 75.3 76.3 57 65.4 64.5 65
4 91.2 90 90.6 31 88.4 85 86.7 58 82 85.6 83.8
5 93.5 95.3 94.4 32 86.5 85 85.8 59 83.1 78.5 80.8
6 91.0 91 91 33 77.5 80.4 79 60 70 68.4 69.2
7 100 97.8 98.9 34 88.2 90.1 89.2 61 63.6 62.2 62.9
8 92.6 93.2 92.9 35 81 82.3 81.7 62 70.1 69.5 69.8
9 90.8 90.1 90.5 36 83 82 82.5 63 80.2 80.5 80.4
10 88.8 85 86.9 37 74.4 75.2 74.8 64 62.3 60 61.2
11 97.1 88.9 93 38 81.2 85 83.1 65 66.6 65.2 65.9
12 98 90.5 94.3 39 88 90.1 89.1 66 80.1 83 81.6
13 101.3 90.1 95.7 40 70.7 80.7 75.7 67 85 91 88
14 98.1 88.9 93.5 41 88 80.2 84.1 68 75.4 78.5 77
15 96.3 86.9 91.6 42 91 90 90.5 69 79.9 87 83.4
16 95.2 90.7 93 43 78.5 82 80.3 70 87.5 90 89
17 96.1 92.4 94.3 44 93 90.3 91.7 71 90 92.3 91.1
18 97.4 95.6 96.5 45 92 95 93.5 72 93.1 95 94
19 97 94.6 95.8 46 88.8 90 89.4 73 73.5 79.1 76.3
20 96.7 97 96.8 47 86 90.1 88 74 75 75.4 75.2
21 126.4 117.8 122.1 48 86.6 88.2 87.4 75 75 77.7 76.4
22 95.6 96.2 95.9 49 78.9 80 79.5 76 80.9 80.6 80.8
23 92.1 90.5 91.3 50 85.6 86 85.8 77 90.2 91.9 91
24 117.8 120.4 119.1 51 97 95.1 96 78 83 86 84.5
25 95.5 95 95.3 52 108 98.8 103.4 79 88 89.2 88.6
26 109.8 100 104.9 53 101.1 100.2 100.7 80 90.7 96 93.3
27 116.4 115.6 116 54 100.2 99.8 100 81 84 85.4 84.7
36
Hàm lượng DAP = 0,6 % cho trọng lượng BC cao nhất, khác biệt này có ý
nghĩa thống kê so với các tỷ lệ 0,2 và 0,4 %. Hàm lượng phosphate này là cần thiết để
A. xylinum phát triển tạo cellulose.
Nếu xét riêng từng yếu tố thì hàm lượng SA = 1% cho trọng lượng BC cao hơn
hẳn so với hàm lượng SA = 0,6 % và 0,8 %. Nhưng do cả 4 yếu tố có tương tác với
nhau nên hàm lượng SA = 0,6 % cũng tạo ra một lượng BC tương đương với khi dùng
0,8 % hay 1% SA. Như vậy, để có hiệu quả kinh tế trong sản xuất, chúng tôi đề nghị
chọn SA = 0,6 % làm công thức lên men.
Từ sự tương tác 4 yếu tố, chúng tôi nhận thấy rằng hàm lượng đường = 6 % cho
trọng lượng BC cao nhất.
Công thức tối ưu để sản xuất BC trên môi trường nước cốt dừa được trình bày
trong bảng 4.4
Bảng 4.4: Công thức tối ƣu để sản xuất BC trên môi trƣờng nƣớc cốt dừa
Yếu tố
Tỷ lệ
cơm dừa/nƣớc
(g/ml)
DAP
(%)
SA
(%)
Saccharose
(%)
Nồng độ
1/10
0,6
0,6
6
Như vậy, với công thức trên, ta có thể sản xuất BC từ môi trường nước cốt dừa
thay cho môi trường nước dừa già truyền thống. Điều này sẽ hạn chế được những khó
khăn, tốn kém của việc vận chuyển nước dừa khi sản xuất BC ở những vùng miền
không có nguyên liệu là nước dừa già.
37
4.4 Khảo sát sự hình thành BC trên môi trƣờng nƣớc dứa
Bảng 4.5 : Kết quả trọng lƣợng BC thô thu đƣợc từ các môi trƣờng (g)
MT
Đợt 1
Đợt 2
TB
MT
Đợt 1
Đợt 2
TB
MT
Đợt 1
Đợt 2
TB
1 89.5 75 82.3 28 103.3 100 101.7 55 86.3 85.3 85.8
2 98.8 109.3 104 29 65.4 65 65.2 56 70.1 69.1 69.6
3 78.7 86 82.3 30 70.5 62 66.3 57 96.5 95.1 95.8
4 89 92 90.5 31 75.6 72.6 74.1 58 104 95 99.5
5 77.7 92.5 85.1 32 72.1 72.1 72.1 59 74.2 74 74.1
6 94.5 99 97 33 82.5 82.5 82.5 60 77.8 77.8 77.8
7 84.5 88 86.3 34 98 100 99 61 87.5 70.3 78.9
8 80 99 89.5 35 70.5 70.2 70.35 62 78.6 87.5 83
9 91.5 103 97.3 36 75.2 65.6 70.4 63 74.5 75.2 75
10 68.2 77 72.6 37 70.1 70.1 70.1 64 69.1 65 67
11 64.5 74.5 69.5 38 69.5 66.6 68 65 75.6 74.5 75
12 79.7 81 80.3 39 67.7 74.5 71.1 66 80.5 72.6 76.5
13 86.2 116 101.1 40 90.7 79.4 85 67 78.5 73.2 76
14 90.3 99 95 41 88.9 95.1 92 68 89.1 89.9 89.5
15 80.1 92.2 86.2 42 93.2 90 91.6 69 86.2 90 88.1
16 91.7 76 84 43 102.4 72.3 87.4 70 84.4 84.5 84.5
17 85.5 80 82.8 44 74.5 60.1 67.3 71 94.6 104.6 99.6
18 84.2 71 77.6 45 82.5 72.8 77.7 72 77.6 73.7 75.7
19 95.2 92.6 93.9 46 93.1 78.8 86 73 93 76.1 84.6
20 104 103 103.5 47 86.6 79.4 83 74 91.1 91.1 91.1
21 88.4 91.2 89.8 48 81.2 81.2 81.2 75 91.2 71.2 81.2
22 118.6 115 116.8 49 108.2 77.5 93 76 112.3 108 110
23 92.1 91.5 91.8 50 97.7 84 91 77 101.5 103 102.3
24 98 104 101 51 97.1 97.1 97.1 78 116.2 106.2 111.2
25 100.3 88 94.2 52 107.4 96.8 102.1 79 104.3 104.3 104.3
26 99.2 88.2 93.7 53 99.1 97.8 98.5 80 103.7 103 103.7
27 109.8 92 100.9 54 93.7 93.7 93.7 81 100.7 95 98
Qua bảng kết quả 4.5 và qua xử lí thống kê bằng trắc nghiệm F, xác suất
p < 0,05 (phụ lục 3), chúng tôi nhận thấy rằng cả 4 yếu tố tỷ lệ pha loãng, DAP, SA và
saccharose có tương tác với nhau. Công thức môi trường số 22 và 78 cho trọng lượng
BC cao hơn hẳn so với các công thức môi trường khác. Khác biệt này rất có ý nghĩa về
phương diện thống kê học.
Công thức tối ưu cho việc sản xuất thạch dừa trên môi trường nước dứa được
trình bày trong bảng 4.6
38
Bảng 4.6 : Công thức tối ƣu để sản xuất thạch dừa trên môi trƣờng
nƣớc dứa
Công thức
môi trƣờng
Tỷ lệ
dứa/nƣớc
(g/ml)
DAP
(%)
SA
(%)
Saccharose
(%)
22
78
1/10
1/30
0,6
0,6
0,8
0,8
2
6
Ở công thức môi trường 22, khi ta pha loãng theo tỷ lệ dứa / nước = 1/10 thì
lượng đường có trong nước dứa còn khá đủ để lên men tạo BC. Vì vậy ta chỉ cần bổ
sung thêm 2 % saccharose để tạo công thức tối ưu cho lên men sản xuất BC.
Đối với công thức môi trường 78, tỷ lệ dứa / nước = 1/30, nghĩa là pha loãng 30
lần, lượng saccharose có trong nước dứa sẽ giảm đi, vì thế cần phải bổ sung thêm
đường. Lúc này hàm lượng saccharose phải là 6 % mới đảm bảo đủ cho quá trình lên
men.
Như vậy, ứng dụng vào thực tế, tùy thuộc tình hình, điều kiện và quy mô sản
xuất mà ta chọn pha môi trường theo công thức 22 hay 78.
4.5 So sánh sinh khối BC thô thu hoạch từ môi trƣờng nƣớc dừa, nƣớc cốt dừa và
nƣớc dứa
Sinh khối BC thô thu hoạch từ các môi trường nước dừa (công thức môi trường
II), nước cốt dừa (theo công thức tối ưu mục 4.3) và nước dứa (công thức tối ưu mục
4.4) được trình bày trong bảng 4.7 và hình 4.4
Bảng 4.7: Sinh khối BC thô thu hoạch từ các môi trƣờng sản xuất khác
nhau
Môi trƣờng Nƣớc dừa Nƣớc cốt dừa Nƣớc dứa
Trung bình trọng lƣợng BC thô (g) 140 141 135
39
Hình 4.4: Biểu đồ so sánh sinh khối BC thô giữa 3 loại môi trƣờng
Qua bảng kết quả 4.7 chúng tôi nhận thấy sinh khối BC tạo ra từ các loại môi
trường là tương đương nhau. Và qua xử lí thống kê bằng trắc nghiệm F, độ tin cậy
95% (phụ lục 4) càng thấy rõ rằng không có sự khác biệt ý nghĩa về phương diện
thống kê học giữa trọng lượng BC được tạo ra từ 3 loại môi trường.
Như vậy, khả năng tạo sinh khối BC của 2 môi trường thay thế (môi trường
nước cốt dừa và môi trường nước dứa) là tương đương với môi trường truyền thống
(môi trường nước dừa già).
Về mặt chất lượng, qua đánh giá cảm quan sơ bộ thấy kết quả như sau:
Bảng 4.8: Kết quả cảm quan BC thô thu hoạch từ 3 loại môi trƣờng
Các tính chất
Môi trƣờng
Nƣớc dừa già Nƣớc cốt dừa Nƣớc dứa
Màu sắc
Cấu trúc
Trắng đục
Chặt, mịn, không
tách lớp
Trắng ngà
Hơi chặt, mịn,
không tách lớp
Trắng ngà
Rất chặt, mịn,
không tách lớp
Qua bảng kết quả 4.8, chúng tôi thấy rằng màu sắc BC sản xuất từ nước dừa có
màu trắng đẹp hơn, nhưng màu trắng ngà của BC thô có thể mất hoặc giảm đi rất nhiều
135
141140
0
50
100
150
nước dừa nước cốt dừa nước dứa
Môi trường
Tr
ọn
g
lư
ợn
g
B
C
(g
)
40
sau quá trình ngâm và rửa kĩ. Còn về cấu trúc, BC sản xuất từ nước dứa có cấu trúc
chặt chẽ hơn, BC sản xuất từ môi trường nước cốt dừa thì kém chặt hơn, nhưng ở cả 2
môi trường thay thế không có sự khác biệt lắm so với BC sản xuất từ nước dừa.
Nhìn chung, màu sắc và cấu trúc của BC thô không ảnh hưởng mạnh đến chất
lượng cảm quan của sản phẩm sau này. Điều này được trình bày cụ thể trong phần ứng
dụng của BC. Vì vậy, môi trường nước cốt dừa và nước dứa hoàn toàn có khả năng
thay thế nước dừa già để sản xuất BC ở quy mô công nghiệp.
Hình 4.5: Sản phẩm BC thô thu hoạch từ 3 môi trƣờng
4.6 Khảo sát ảnh hƣởng của các loại acid đến quá trình lên men tạo BC
Kết quả thí nghiệm được trình bày ở bảng 4.9 và hình 4.6
Bảng 4.9: So sánh sinh khối BC thô tạo ra khi thay đổi acid bổ sung đến pH = 4,5
Loại acid bổ sung CH3COOH HCl H2SO4
Trung bình trọng lƣợng BC thô (g) 139,3 135,7 136,3
41
Acid bổ sung (để đạt pH = 4,5)
Hình 4.6: Biểu đồ so sánh trọng lƣợng BC thô khi thay đổi acid bổ sung
đến pH = 4,5
Qua bảng số liệu 4.9 và kết quả xử lí thống kê bằng trắc nghiệm F và LSD (phụ
lục 5), chúng tôi thấy không có sự khác biệt ý nghĩa về mặt thống kê giữa trọng lượng
BC thô được tạo ra từ các môi trường bổ sung các loại acid khác nhau. Từ đây có thể
kết luận rằng vai trò của acid acetic chỉ là chất điều chỉnh pH, tạo ra môi trường acid
để lên men, chứ không đóng vai trò là chất cung cấp năng lượng cho A. xylinum phát
triển. Như vậy, trong sản xuất công nghiệp, ta có thể thay thế acid acetic bằng các loại
acid vô cơ khác như HCl, H2SO4 để tiện dụng hơn, kinh tế hơn.
4.7 So sánh giá trị kinh tế của các loại môi trƣờng lên men sản xuất BC
Đa dạng hóa các loại môi trường lên men nhằm đem lại sự tiện dụng, đa dạng,
tránh phụ thuộc nguồn nguyên liệu nhưng đồng thời phải tính đến giá thành của các
nguyên liệu sản xuất.
136.3135.7139.3
0
50
100
150
Tr
ọn
g
lư
ợn
g
BC
(g
)
CH3COOH H2SO4 HCl
42
Bảng 4.10: So sánh giá thành các loại nguyên liệu tính trên 100 lít môi trƣờng
sản xuất BC
Môi trƣờng nƣớc dừa
Thành phần Nước dừa DAP (0,2%) SA (0,8%) Saccharose (2%)
Đơn vị (đ/kg) 1000 16.000 6.000 8.000
Số lƣợng (kg) 100 0,2 0,8 2
Thành tiền 100.000 3200 4800 16.000
Tổng tiền (đ) 124.000
Môi trƣờng nƣớc cốt dừa
Thành phần Cơm dừa DAP (0,6 %) SA (0,6 %) Saccharose (6%)
Đơn vị (đ/kg) 8000 16.000 6.000 8.000
Số lƣợng (kg) 10 0,6 0,6 6
Thành tiền 80.000 9600 3600 48.000
Tổng tiền (đ) 141.200
Môi trƣờng nƣớc dứa (Theo công thức môi trƣờng 22)
Thành phần Dứa DAP (0,6 %) SA (0,8 %) Saccharose (2%)
Đơn vị (đ/kg) 2000 16.000 6.000 8.000
Số lƣợng (kg) 10 0,6 0,8 2
Thành tiền 20.000 9600 4800 16.000
Tổng tiền (đ) 50.400
Môi trƣờng nƣớc dứa (Theo công thức môi trƣờng 78)
Thành phần Dứa DAP (0,6 %) SA (0,8 %) Saccharose (6%)
Đơn vị (đ/kg) 2000 16.000 6.000 8.000
Số lƣợng (kg) 3,3 0,6 0,8 6
Thành tiền 6600 9600 4800 48.000
Tổng tiền (đ) 69.000
43
Qua bảng số liệu 4.10, chúng tôi nhận thấy môi trường nước cốt dừa có giá
thành cao hơn so với môi trường nước dừa già truyền thống, tuy nhiên chúng tôi vẫn
khuyến khích sử dụng nước cốt dừa làm môi trường thay thế vì tính tiện dụng của môi
trường này. Việc vận chuyển cơm dừa sẽ dễ dàng và đơn giản hơn rất nhiều so với vận
chuyển nước dừa, nhất là khi vận chuyển với số lượng lớn để ứng dụng trong sản xuất
công nghiệp.
Đối với môi trường nước dứa, do tận dụng được dứa phụ liệu từ các quy trình
sản xuất thực phẩm khác, nhất là cùi dứa từ các cơ sở sản xuất dứa đóng hộp, nên giá
thành thấp hơn rất nhiều so với môi trường nước dừa già truyền thống.
Như vậy, việc sử dụng các loại môi trường thay thế sẽ giúp khắc phục phần nào
những khó khăn của việc dùng nước dừa già làm nguyên liệu sản xuất BC ở quy mô
công nghiệp như khu vực, điều kiện địa lí, thời vụ, công tác vận chuyển, giá thành…
Ta có thể tiến hành sản xuất BC trên các môi trường thay thế này nhằm đem lại sự đa
dạng trong sản xuất, tránh lệ thuộc nguồn nguyên liệu, lại vừa tiết kiệm chi phí sản
xuất, đem lại hiệu quả kinh tế cao hơn.
44
Chƣơng 5. KẾT LUẬN VÀ ĐỀ NGHỊ
5.1 Kết luận
Qua thời gian tiến hành đề tài, chúng tôi đã thu được các kết quả và rút ra một số kết
luận như sau:
- Thuần khiết giống A. xylinum từ giống chai sẵn có, giữ giống trên môi trường
thạch nghiêng là công đoạn cần thiết để tránh hiện tượng thoái hóa giống, giúp
phục hồi giống nhanh sau thời gian dài bảo quản.
- Thành phần môi trường nước cốt dừa có tỷ lệ pha loãng là 10 lần (cơm dừa /
nước = 1/10); hàm lượng DAP 0,6 %; SA 0,6 %; saccharose 6 % là thích hợp
nhất cho lên men sản xuất BC.
- Công thức thích hợp nhất cho lên men sản xuất BC trên môi trường nước dứa:
Tỷ lệ dứa / nước = 1/10, DAP 0,6 %; SA 0,8 %; saccharose 2 %
Hay:
Tỷ lệ dứa / nước = 1/30; DAP 0,6 %; SA 0,8 % và saccharose 6%
- Nước cốt dừa và nước dứa có khả năng thay thế nước dừa già làm nguyên liệu
cho quá trình sản xuất BC từ A. xylinum.
- Có thể dùng các loại acid khác thay thế acid acetic để điều chỉnh pH đến 4,5
làm môi trường lên men. Các acid vô cơ khác (HCl, H2SO4) rẻ hơn sẽ giúp tiết
kiệm chi phí sản xuất.
5.2 Đề nghị
Do giới hạn về thời gian và điều kiện thí nghiệm nên đề tài còn nhiều hạn chế. Nếu
được tiếp tục nghiên cứu với điều kiện tốt hơn, chúng tôi xin đề nghị một số ý kiến
sau:
- Tiến hành các thí nghiệm trên ở quy mô lớn hơn.
- Lặp lại thí nghiệm nhiều lần hơn để kiểm chứng các kết quả thu được.
- Nghiên cứu xác định công thức sản xuất BC trên một số môi trường khác: nước
mía, nước chiết bã men bia, rỉ đường… để mở rộng nguồn nguyên liệu.
- Nghiên cứu thêm nhiều sản phẩm khác để đa dạng hóa ứng dụng của BC.
45
TÀI LIỆU THAM KHẢO
TIẾNG VIỆT
1. Trần Thị Diễm Chi, 2000. Khảo sát quy trình nuôi cấy và một số ứng dụng của
A. xylinum trong y dược. Khóa luận tốt nghiệp Dược sĩ, ĐH Y Dược TPHCM.
2. Nguyễn Lân Dũng, Phạm Văn Ty, Dương Đức Tiến, 1975. Vi sinh học, tập 1.
NXB Đại học và Trung học chuyên nghiệp Hà Nội.
3. Nguyễn Lân Dũng và ctv, 1976. Một số phương pháp nghiên cứu vi sinh vật,
tập 2. NXB Khoa học và kĩ thuật Hà Nội.
4. Nguyễn Lân Dũng, Phạm Văn Ty, Dương Đức Tiến, 1980. Vi sinh học, tập 2.
NXB Đại học và Trung học chuyên nghiệp Hà Nội.
5. Trương Thị Anh Đào, 2003. Tối ưu hoá một số môi trường nuôi cấy
Acetobacter xylinum để sản xuất BC. Khóa luận tốt nghiệp ngành Công nghệ
sinh học, ĐH Khoa học tự nhiên TPHCM.
6. Phùng Lê Nhật Đông, Trần Kim Thủy, 2003. Sản xuất BC trên môi trường
nước mía và nước chiết bã men bia - Một số ứng dụng của BC trong công nghệ
thực phẩm. Khóa luận tốt nghiệp khoa Công nghệ thực phẩm, ĐH Nông Lâm
TPHCM.
7. Vương Thị Việt Hoa, 2000. Giáo trình thực tập Vi sinh thực phẩm. Trường ĐH
Nông Lâm TPHCM.
8. Trần Phú Hòa, 1996. Nghiên cứu về thạch dừa. Khóa luận tốt nghiệp khoa
Công nghệ hoá học và dầu khí, ĐH Bách Khoa TPHCM.
9. Đinh Thị Kim Nhung, 1996. Nghiên cứu một số đặc điểm sinh học của vi
khuẩn Acetobacter và ứng dụng chúng trong lên men acetic theo phương pháp
chìm. Luận án Phó tiến sĩ khoa học sinh học, Hà Nội.
10. Lương Đức Phẩm, 1998. Công nghệ vi sinh vật. NXB Nông nghiệp Hà Nội
46
11. Nguyễn Thị Cẩm Tú, 2003. Phân lập, tuyển chọn, nghiên cứu đặc điểm sinh
học của một số chủng Acetobacter để ứng dụng lên men dấm. Khóa luận tốt
nghiệp khoa Công nghệ thực phẩm ĐH Nông Lâm TPHCM.
12. Trần Thị Ánh Tuyết, 2004. Bước đầu cố định enzyme amylase trên chất mang
cellulose vi khuẩn (bacterial cellulose). Khóa luận tốt nghiệp cử nhân sinh học,
ĐH Khoa Học Tự Nhiên TPHCM.
13. Lê Thị Khánh Vân và ctv. Sản xuất thạch dừa từ nước dừa. Tạp chí tháng
07/85. Viện nghiên cứu dầu và cây có dầu.
TIẾNG NƢỚC NGOÀI
14. Anzaldo et al, 1985. Co _ water as in intravenous fluid. Phi. J. coco strudies 10
(1): 31 – 34
15. Africa TK., 1944. The production of Nata from co. water. Unitas 22: 60 – 100
16. Bergonia et al, 1984. High performance liquid chromatographic analysis of
carbohydrates in co. water. Proc. Second ASEAN workshop on Food
Analytical Techniques Surabaya, Indonesia 203 – 24.
17. Brown et al, 1976. Cellulose biosynthesis in Acetobacter xylinum. Proc. Nat.
Acad. Sci. USA. 73 (12): 4565 – 4569
18. C. S. Pederson, 1995. Microbiology of food fermentation.
19. Fumihiro Yoshinagha et al, 1997. Research Progess in production of bacterial
cellulose by aeration and agitation culture and its applications as a new
industrial material. Biosci. Biotech. Biochim
20. J. A. Bazon, J. C. Velasco, 1984. Coconut production and unilisation Coconut
water. Pp. 291 - 305.
21. Julian a. Ba, 1990. Coconut as food. Philippines Coconut research and
development. Quenzon city.
22. Sanger PC., 1987. Nata de Coco, a profitable cottage industry DCRDF
Professional chair lecture, institute of food science and technology. College of
Agriculture university of Phils.
23. Vanderbelt J., 1945. Nutritive value of co. nature. 156: 174 – 175.
47
TÀI LIỆU INTERNET
24. www. webcom. com / ~ sease/ kombucha / roche. html
25. www. botany. utexas. edu / facstaff / facpages / mbrown / aceto. htm
26. www. res. titech. acid amin.jp /~ junkan/ english/ cellulose
27. www. res. titech. ac. jp /~ junkan/ english/ cellulose
28. www. tabledescalories. com / uk / index
29. www. HappyHerbalist. com
30. www. visualsunlimited. com
31. www. botany. utexas. edu/…/ movies / movies.htm
32. www. botany. utexas. edu/ facstaff / facpages / mbrown / position 1. htm
33. http:// businessafrica. net/ africabiz/ arvol1/ is44front. php
34. http:// food. oregonstate. edu/ a / pine. html
35. home. wanadoo. nl/…/ bacteriologiehandboek. htm
36. www. sdsc. edu / pb / edu / pharm207 / 7 / pineapple. html
Các file đính kèm theo tài liệu này:
- lvhoanchinh.pdf