Tài liệu Đề tài Bảo mật thông tin Part 3: Luận văn
Đề Tài:
Bảo mật thơng tin-Part 3
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
I.2 LẬP MÃ DES
Đây là ví dụ về việc lập mã sử dụng DES. Giả sử ta mã hóa bản rõ sau trong dạng
thập lục phân (Hexadecimal)
0123456789ABCDEF
sử dụng khóa thập lục phân
133457799BBCDFF1
Khóa trong dạng nhị phân không có các bit kiểm tra sẽ là:
00010010011010010101101111001001101101111011011111111000.
Aùp dụng IP, ta nhận được L0 và R0 (trong dạng nhị phân) :
L0
L1 = R0
=
=
11001100000000001100110011111111
11110000101010101111000010101010
16 vòng lập mã được thể hiện như sau:
E(R0)
K1
E(R0) ⊕ K1
Output S-hộp
f(R0,K1)
L2 = R1
=
=
=
=
=
=
011110100001010101010101011110100001010101010101
000110110000001011101111111111000111000001110010
011000010001011110111010100001100110010100100111
01011100100000101011010110010111
00100011010010101010100110111011
111011110...
11 trang |
Chia sẻ: haohao | Lượt xem: 1413 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Đề tài Bảo mật thông tin Part 3, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Luận văn
Đề Tài:
Bảo mật thơng tin-Part 3
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
I.2 LẬP MÃ DES
Đây là ví dụ về việc lập mã sử dụng DES. Giả sử ta mã hóa bản rõ sau trong dạng
thập lục phân (Hexadecimal)
0123456789ABCDEF
sử dụng khóa thập lục phân
133457799BBCDFF1
Khóa trong dạng nhị phân không có các bit kiểm tra sẽ là:
00010010011010010101101111001001101101111011011111111000.
Aùp dụng IP, ta nhận được L0 và R0 (trong dạng nhị phân) :
L0
L1 = R0
=
=
11001100000000001100110011111111
11110000101010101111000010101010
16 vòng lập mã được thể hiện như sau:
E(R0)
K1
E(R0) ⊕ K1
Output S-hộp
f(R0,K1)
L2 = R1
=
=
=
=
=
=
011110100001010101010101011110100001010101010101
000110110000001011101111111111000111000001110010
011000010001011110111010100001100110010100100111
01011100100000101011010110010111
00100011010010101010100110111011
11101111010010100110010101000100
E(R1) = 011101011110101001010100001100001010101000001001
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
K2
E(R1) ⊕ K2
Output S-hộp
f(R1, K2)
L3 = R2
=
=
=
=
=
011110011010111011011001110110111100100111100101
000011000100010010001101111010110110001111101100
11111000110100000011101010101110
00111100101010111000011110100011
11001100000000010111011100001001
E(R2)
K3
E(R2) ⊕ K3
S-box output
f(R2, K3)
L4 = R3
=
=
=
=
=
=
111001011000000000000010101110101110100001010011
010101011111110010001010010000101100111110011001
101100000111110010001000111110000010011111001010
00100111000100001110000101101111
01001101000101100110111010110000
10100010010111000000101111110100
E(R3)
K4
E(R3) ⊕ K4
S-box output
f(R3, K4)
L5 = R4
=
=
=
=
=
=
010100000100001011111000000001010111111110101001
011100101010110111010110110110110011010100011101
001000101110111100101110110111100100101010110100
00100001111011011001111100111010
10111011001000110111011101001100
011101110
E(R4)
K5
E(R4) ⊕ K5
Xuất S-hộp
f(R4, K5)
L6 = R5
=
=
=
=
=
=
101110101110100100000100000000000000001000001010
011111001110110000000111111010110101001110101000
110001100000010100000011111010110101000110100010
01010000110010000011000111101011
00101000000100111010110111000011
10001010010011111010011000110111
E(R5)
K6
E(R5) ⊕ K6
S-box output
f(R5, K6)
L7 = R6
=
=
=
=
=
=
110001010100001001011111110100001100000110101111
011000111010010100111110010100000111101100101111
101001101110011101100001100000001011101010000000
01000001111100110100110000111101
10011110010001011100110100101100
11101001011001111100110101101001
E(R6)
K7
E(R6) ⊕ K7
S-box output
f(R6, K7)
L8 = R7
=
=
=
=
=
=
111101010010101100001111111001011010101101010011
111011001000010010110111111101100001100010111100
000110011010111110111000000100111011001111101111
00010000011101010100000010101101
10001100000001010001110000100111
00000110010010101011101000010000
E(R7) = 000000001100001001010101010111110100000010100000
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
K8
E(R7) ⊕ K8
S-box output
f(R7, K8)
L9 = R8
=
=
=
=
=
111101111000101000111010110000010011101111111011
111101110100100001101111100111100111101101011011
01101100000110000111110010101110
00111100000011101000011011111001
11010101011010010100101110010000
E(R8)
K9
E(R8) ⊕ K9
S-box output
f(R8, K9)
L10 = R9
=
=
=
=
=
=
011010101010101101010010101001010111110010100001
111000001101101111101011111011011110011110000001
100010100111000010111001010010001001101100100000
00010001000011000101011101110111
00100010001101100111110001101010
00100100011111001100011001111010
E(R9)
K10
E(R9) ⊕ K10
S-box output
f(R9, K10)
L11 = R10
=
=
=
=
=
=
000100001000001111111001011000001100001111110100
101100011111001101000111101110100100011001001111
101000010111000010111110110110101000010110111011
11011010000001000101001001110101
01100010101111001001110000100010
10110111110101011101011110110010
E(R10)
K11
E(R10) ⊕ K11
S-box output
f(R10, K11)
L12 = R11
=
=
=
=
=
=
010110101111111010101011111010101111110110100101
001000010101111111010011110111101101001110000110
011110111010000101111000001101000010111000100011
01110011000001011101000100000001
11100001000001001111101000000010
11000101011110000011110001111000
E(R11)
K12
E(R11) ⊕ K12
S-box output
f(R11, K12)
L13 = R12
011000001010101111110000000111111000001111110001
011101010111000111110101100101000110011111101001
000101011101101000000101100010111110010000011000
01111011100010110010011000110101
11000010011010001100111111101010
01110101101111010001100001011000
E(R12)
K13
E(R12)⊕ K13
S-box output
f(R12, K13)
L14 = R13
=
=
=
=
=
=
001110101011110111111010100011110000001011110000
100101111100010111010001111110101011101001000001
101011010111100000101011011101011011100010110001
10011010110100011000101101001111
11011101101110110010100100100010
00011000110000110001010101011010
E(R13)
K14
E(R13)⊕ K14
=
=
=
000011110001011000000110100010101010101011110100
010111110100001110110111111100101110011100111010
010100000101010110110001011110000100110111001110
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
S-box output
f(R13, K14)
L15 = R14
=
=
=
01100100011110011001101011110001
10110111001100011000111001010101
11000010100011001001011000001101
E(R14)
K15
E(R14)⊕ K15
S-box output
f(R14, K15)
L16 = R15
=
=
=
=
=
=
111000000101010001011001010010101100000001011011
101111111001000110001101001111010011111100001010
010111111100010111010100011101111111111101010001
10110010111010001000110100111100
01011011100000010010011101101110
01000011010000100011001000110100
E(R15)
K16
E(R15)⊕ K16
S-box output
f(R15, K16)
R16
=
=
=
=
=
=
001000000110101000000100000110100100000110101000
110010110011110110001011000011100001011111110101
111010110101011110001111000101000101011001011101
10100111100000110010010000101001
11001000110000000100111110011000
00001010010011001101100110010101
Cuối cùng, áp dụng IP-1 cho R16L16 ta nhận được bản mã trong dạng thập lục phân
như sau:
85E813540F0AB405
I. 3 THÁM MÃ DES
Một phương pháp rất nổi tiếng trong thám mã DES là “thám mã vi sai“
(differential cryptanalysic) do Biham và Shamir đề xuất. Đó là phương pháp thám với bản
rõ được chọn. Nó không được sử dụng trong thực tế để thám mã DES 16 vòng, mà chỉ
được sử dụng để thám các hệ DES có ít vòng hơn.
Bây giờ ta sẽ mô tả những ý tưởng cơ bản của kỹ thuật này. Để đạt mục đích thám
mã, ta có thể bỏ qua hoán vị khởi tạo IP và hoán vị đảo của nó (bởi vì điều đó không cần
thiết cho việc thám mã). Như đã nhận xét ở trên, ta xét các hệ DES n vòng, với n ≤ 16.
Trong cài đặt ta có thể coi L0R0 là bản rõ và LnRn như là bản mã.
Thám mã vi sai đòi hỏi phải so sánh x-or (exclusive-or) của hai bản rõ với x-or của
hai bản mã tương ứng. Nói chung, ta sẽ quan sát hai bản rõ L0R0 và L0*R0* với trị x-or
được đặc tả L0’R0’ = L0R0 ⊕ L0*R0*. Trong những thảo luận sau ta sẽ sử dụng ký hiệu (‘)
để chỉ x-or của hai xâu bit.
Định nghĩa 3.1: Cho Sj là một S-hộp (1 ≤ j ≤ 8). Xét một cặp xâu 6-bit là (Bj,Bj* ).
Ta nói rằng, xâu nhập x-or (của Sj) là Bj ⊕ Bj* và xâu xuất x-or (của Sj) là Sj(Bj) ⊕ Sj(Bj*).
Chú ý là xâu nhập x-or là xâu bit có độ dài 6, còn xâu xuất x-or có độ dài 4.
Định nghĩa 3.2: Với bất kỳ Bj ’ ∈ (Z2) 6, ta định nghĩa tập Δ(Bj’) gồm các cặp
(Bj,Bj*) có x-or nhập là Bj’.
Dễ dàng thấy rằng, bất kỳ tập Δ(Bj’) nào cũng có 26 = 64 cặp, và do đó
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
Δ(Bj’) = {(Bj, Bj ⊕ Bj’) : Bj ∈ (Z2) 6 }
Với mỗi cặp trong Δ(Bj’), ta có thể tính xâu x-or xuất của Sj và lập được phân bố
kết quả. Có 64 xâu xuất x-or, được phân bố trong 24 = 16 giá trị có thể có. Tính không
đồng đều của các phân bố đó là cơ sở để mã thám.
Ví dụ 3.1: Giả sử ta xét S1 là S-hộp đầu tiên và xâu nhập x-or là 110100. Khi đó
Δ(110100) = {(000000, 110100), (000001, 110101), ..., (111111, 001011)}
Với mỗi cặp trong tập Δ(110100), ta tính xâu xuất x-or của S1. Chẳng hạn,
S1(000000) = E16 = 1110, S1(110100) = 1001,
như vậy xâu xuất x-or cho cặp (000000,110100) là 0111.
Nếu thực hiện điều đó cho 64 cặp trong Δ(110100) thì ta nhận được phân bố của
các xâu x-or xuất sau:
000
0
000
1
001
0
001
1
010
0
010
1
011
0
011
1
100
0
100
1
101
0
101
1
110
0
110
1
111
0
111
1
0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
Trong ví dụ 3.1, chỉ có 8 trong số 16 xâu x-or xuất có thể có xuất hiện thật sự. Ví
dụ cụ thể này đã chỉ ra sự phân bố rất không đều của các xâu x-or xuất. Nói chung, nếu ta
cố định S-hộp Sj và xâu nhập x-or Bj’, thì trung bình có khoảng 75 - 80% các xâu x-or
xuất có thể có xuất hiện thực sự.
Để mô tả các phân bô đó ta đưa ra định nghĩa sau.
Định nghĩa 3.3: Với 1 ≤ j ≤ 8 và với các xâu bit Bj’ độ dài 6 và Cj’ độ dài 4, ta
định nghĩa:
INj(Bj’,Cj’) = {Bj ∈ (Z2)6 : Sj(Bj) ⊕ Sj(Bj ⊕ Bj’) = Cj’}
và
Nj(Bj’, Cj’) = ⎮INj(Bj’, Cj’)⎮
Bảng sau sẽ cho các xâu nhập có thể có với xâu x-or nhập 110100
Xâu xuất x-or Các xâu nhập có thể có
0000
0001 000011, 001111, 011110, 011111
101010, 101011, 110111, 111011
0010
000100, 000101, 001110, 010001
010010, 010100, 011010, 011011
100000, 100101, 010110, 101110
101111, 110000, 110001, 111010
0011 000001, 000010, 010101, 100001
110101, 110110
0100 010011, 100111
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
0101
0110
0111
000000, 001000, 001101, 010111
011000, 011101, 100011, 101001
101100, 110100, 111001, 111100
1000 001001, 001100, 011001, 101101
111000, 111101
1001
1010
1011
1100
1101 000110, 010000, 010110, 011100
110010, 100100, 101000, 110010
1110
1111 000111, 001010, 001011, 110011
111110, 111111
Nj(Bj’, Cj’) tính số các cặp với xâu nhập x-or bằng Bj’ có xâu xuất x-or bằng Cj’
với S-hộp Sj. Các cặp đó có các xâu nhập x-or được đặc tả và đưa ra cách tính các xâu
xuất x-or có thể nhận được từ tập INj(Bj’, Cj’). Để ý rằng, tập này có thể phân thành
Nj(Bj’, Cj’) /2 cặp, mỗi cặp có xâu x-or nhập bằng Bj’.
Phân bố trong ví dụ 3.1 chứa các trị N1(110100, C1’), C1’∈ (Z2)4. Trong bảng trên
chứa các tập IN(110100, C1’).
Với mỗi tám S-hộp, có 64 xâu nhập x-or có thể có. Như vậy, có 512 phân bố có
thể tính được. Nhắc lại là, xâu nhập cho S-hộp ở vòng thứ i là B= E⊕ J, với E = E(Ri-1) là
mở rộng của Ri-1 và J = Ki gồm các bit khóa của vòng i. Bây giờ xâu nhập x-or (cho tất cả
tám S-hộp) có thể tính được như sau:
B ⊕ B* = (E ⊕ J) ⊕ (E* ⊕ J) = E ⊕ E*
Điều này rất quan trọng để thấy rằng, xâu nhập x-or không phụ thuộc vào các bit
khóa J. (Do đó, xâu xuất x-or cũng không phụ thuộc vào các bit khóa.)
Ta sẽ viết mỗi B, E và J như là nối của tám xâu 6-bit:
B = B1B2B3B4B5B6B7B8
E = E1E2E3E4E5E6E7E8
J = J1J2J3J4J5J6J7J8
và ta cũng sẽ viết B* và E* như vậy. Bây giờ giả sử là ta đã biết các trị Ej và Ej* với một j
nào đó, 1 ≤ j ≤ 8, và trị của xâu xuất x-or cho Sj, Cj’ = Sj(Bj) ⊕ Sj(Bj* ). Khi đó sẽ là:
Ej ⊕ Jj ∈ INj(Ej’, Cj’),
với Ej’ = Ej ⊕ Ej*.
Định nghĩa 3.4: Giả sử Ej và Ej* là các xâu bit độ dài 6, và Cj’ là xâu bit độ dài 4. Ta định
nghĩa:
testj(Ej, Ej*, Cj’) = { Bj ⊕ Ej : Bj ∈ INj(Ej’, Cj’) },
với Ej’ = Ej ⊕ Ej*.
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
Định lý 3.1:
Giả sử Ej và Ej* là hai xâu nhập cho S-hộp Sj, và xâu xuất x-or cho Sj là Cj’. Ký hiệu
Ej’ = Ej ⊕ Ej* . Khi đó các bit khóa Jj có trong tập testj(Ej, Ej*, Cj’).
Để ý, đó chính là các xâu bit Nj(Ej’, Cj’) độ dài 6 trong tập testj(Ej, Ej*, Cj’); giá trị
chính xác của Jj phải là một trong số đó.
Ví dụ 3.2:
Giả sử E1 = 000001, E1*= 110101 và C1’= 1101. Do đó N1(110101,1101) = 8, đúng bằng 8
xâu bit trong tập test1(000001, 110101, 1101). Từ bảng trên ta thấy rằng
IN1(110100, 1101) = {000110, 010000, 010110, 011100, 100010, 100100, 101000,
110010}
Cho nên
test1(000001, 110101,1101) = {000111, 010001, 010111, 011101, 100011, 100101,
101001, 110011}
Nếu ta có một bộ ba thứ hai như thế E1, E1*, C1’, khi đó ta sẽ nhận được tập thứ
hai test1 của các trị cho các bit khóa trong J1. Trị đúng của J1 cần phải nằm trong giao của
các S-hộp. Nếu ta có một vài bộ ba như vậy, khi đó ta có thể mau chóng tìm được các bit
khóa trong J1. Một cách rõ ràng hơn để thực hiện điều đó là lập một bảng của 64 bộ đếm
biểu diễn cho 64 khả năng của của 6 khóa bit trong J1. Bộ đếm sẽ tăng mỗi lần, tương ứng
với sự xuất hiện của các bit khóa trong tập test1 cho một bộ ba cụ thể. Cho t bộ ba, ta hy
vọng tìm được duy nhất một bộ đếm có trị t; trị đó sẽ tương ứng với trị đúng của các bit
khóa trong J1.
I.3.1. Thám mã hệ DES - 3 vòng
Bây giờ ta sẽ xét ý tưởng vừa trình bày cho việc thám mã hệ DES - ba vòng. Ta sẽ
bắt đầu với cặp bản rõ và các bản mã tương ứng: L0R0, L0*R0*, L3R3 và L3*R3*. Ta có thể
biểu diễn R3 như sau:
R3 = L2 ⊕ f(R2, K3)
= R1 ⊕ f(R2, K3)
= L0 ⊕ f(R0, K1) ⊕ f(R2, K3)
R3* có thể biểu diễn một cách tương tự , do vậy:
R3’ = L0’ ⊕ f(R0, K1) ⊕ f(R0*, K1) ⊕ f(R2, K3) ⊕ f(R2*, K3)
Bây giờ, giả sử ta đã chọn được các bản rõ sao cho R0 = R0*, chẳng hạn:
R0’ = 00...0
Khi đó f(R0, K1) = f(R0*, K1), và do đó:
R3’ = L0’⊕ f(R2, K3) ⊕ f(R2*, K3)
Ở điểm này R3’ là được biết khi nó có thể tính được từ hai bản mã, và L0’ là biết
được khi nó có thể tính được từ hai bản rõ. Nghĩa là ta có thể tính được f(R2,K3)⊕f(R2*,K3)
từ phương trình:
f(R2, K3) ⊕ f(R2*, K3) = R3’ ⊕ L0’
Bây giờ f(R2, K3) = P(C) và f(R2*, K3) = P(C*), với C và C* tương ứng là ký hiệu
của hai xâu xuất của tám S-hộp (nhắc lại, P là cố định, là hoán vị được biết công khai).
Nên:
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
P(C) ⊕ P(C*) = R3’ ⊕ L0’
và kết quả là:
C’ = C ⊕ C* = P-1(R3’ ⊕ L0’) (1)
Đó là xâu xuất x-or cho tám S-hộp trong vòng ba.
Bây giờ, R2 = L3 và R2* = L3* là đã biết (chúng là một phần của các bản mã). Từ
đây ta có thể tính:
E = E(L3) (2)
và
E* = E(L3*) (3)
sử dụng hàm mở rộng E được biết công khai. Chúng là những xâu nhập cho các S-hộp cho
vòng ba. Như vậy giờ ta đã biết E, E*, và C’ cho vòng ba và ta có thể tiếp tục xây dựng
các tập test1, ..., test8 của các trị có thể có cho các bit khóa trong J1, ..., J8.
Giải thuật vừa xét có thể biểu diễn bởi các mã sau:
Input: L0R0, L0*R0*, L3R3 và L3*R3*, với R0 = R0*
1. Tính C’ = P-1(R3’ ⊕ L0’)
2. Tính E = E(L3) và E* = E(L*)
3. for j = 1 to 8 do
compute testj(Ej, Ej*, Cj’)
Việc mã thám sẽ sử dụng một số bộ ba E, E*, C’ như vậy. Ta sẽ lập tám bảng các
bộ đếm và do đó xác định được 48 bit trong K3, là khóa cho vòng ba. 56 bit trong khóa khi
đó có thể tìm được hoàn toàn từ 28 = 256 khả năng cho 8 bit khóa.
Bây giờ ta sẽ minh họa điều đó qua ví dụ sau.
Ví dụ 3.3
Giả sử ta có ba cặp bản rõ và bản mã, với các bản mã cùng có các xâu x-or được
mã hóa bởi cùng một khóa. Để ngắn gọn ta sử dụng hệ thập lục phân:
Bản rõ Bản mã
748502CD38451097
3874756438451097
03C70306D8A09F10
78560A0960E6D4CB
486911026ACDFF31
375BD31F6ACDFF31
45FA285BE5ADC730
134F7915AC253457
357418DA013FEC86
12549847013FEC86
D8A31B2F28BBC5CF
0F317AC2B23CB944
Từ cặp đầu tiên ta tính các xâu nhập của S-hộp (cho vòng 3) từ các phương trình
(2) và (3). Chúng là:
E = 000000000111111000001110100000000110100000001100
E* = 101111110000001010101100000001010100000001010010
Xâu xuất x-or của S-hộp được tính bằng phương trình (1) sẽ là:
C’ = 10010110010111010101101101100111
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
Từ cặp thứ hai, ta tính được các xâu nhập cho S-hộp là:
E = 101000001011111111110100000101010000001011110110
E* = 100010100110101001011110101111110010100010101001
và xâu xuất x-or của S-hộp là:
C’ = 10011100100111000001111101010110
Từ cặp thứ ba, các xâu nhập cho S-hộp sẽ là:
E = 111011110001010100000110100011110110100101011111
E* = 000001011110100110100010101111110101011000000100
và xâu xuất x-or của S-hộp là:
C’ = 11010101011101011101101100101011
Tiếp theo, ta lập bảng các trị trong tám mảng bộ đếm cho mỗi cặp. Ta sẽ minh họa
thủ tục với các mảng đếm cho J1 từ cặp đầu tiên. Trong cặp này, ta có E1’= 101111 và C1’
= 1001. Tập:
IN1(101111, 1001) = {000000, 000111, 101000, 101111}
Do E1 = 000000 ta có:
J1 ∈ test1(000000, 101111, 1001) = {000000, 000111, 101000, 101111}
Do đó ta tăng các trị 0, 7, 40 và 47 trong các mảng đếm cho J1.
Cuối cùng ta sẽ trình bày các bảng. Nếu ta xem các xâu bit độ dài 6 như là biểu
diễn của các số nguyên trong khoảng 0-63, thì 64 trị sẽ tương ứng với 0, 1, ..., 63. Các
mảng đếm sẽ là như sau:
J1
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
J2
0 0 0 1 0 3 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0
0 0 1 1 0 0 0 0 1 0 1 0 2 0 0 0
J3
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 1
0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
J4
3 1 0 0 0 0 0 0 0 0 2 2 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1
ĐỒ ÁN BẢO MẬT THÔNG TIN HỆ MÃ DES
NGÔ THỊ TUYẾT HÀ – T012825
1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 1
J5
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 0 0 0 2 0
J6
1 0 0 1 1 0 0 3 0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
J7
0 0 2 1 0 1 0 3 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 2 0 0 0 2 0 0 0 0 1 2 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
J8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1
0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Trong mỗi tám mảng đếm, có duy nhất một bộ đếm có trị là 3. Vị trí của các bộ
đếm đó xác định các bit khóa trong J1, ..., J8. Các vị trí đó là: 47, 5, 19, 0, 24, 7, 7, 49.
Chuyển các số nguyên đó sang dạng nhị phân, ta nhận được J1, ..., J8:
J1 = 101111
J2 = 000101
J3 = 010011
J4 = 000000
J5 = 011000
J6 = 000111
J7 = 000111
J8 = 110001
Bây giờ ta có thể tạo ra 48 bit khóa, bằng cách quan sát lịch khóa cho vòng ba. Suy
ra là K có dạng:
0001101 0110001 01?01?0 1?00100
0101001 0000??0 111?11? ?100011
với các bit kiểm tra đã được loại bỏ và “?” ký hiệu bit khóa chưa biết. Khóa đầy đủ (trong
dạng thập lục phân, gồm cả bit kiểm tra) sẽ là:
1A624C89520DEC46
Các file đính kèm theo tài liệu này:
- Đề Tài- Bảo mật thông tin Part 3.pdf