Bài giảng Lý thuyết tín hiệu - Chương I: Một số khái niệm căn bản - Võ Thị Thu Sương

Tài liệu Bài giảng Lý thuyết tín hiệu - Chương I: Một số khái niệm căn bản - Võ Thị Thu Sương: Chương 1: Một số khái niệm căn bản 1. Tín hiệu – Tin tức – Hệ thống 2. Phân lọai tín hiệu 3. Biểu diễn giải tích tín hiệu CuuDuongThanCong.com https://fb.com/tailieudientucntt 1. Tín hiệu- Tin tức- Hệ thống  Tín hiệu là biểu hiện vật lý của tin tức mà nó mang từ nguồn tin đến nơi nhận tin. Mô hình lý thuyết: hàm theo thời gian x(t)  Tin tức là những nội dung cần truyền đi qua hình ảnh, tiếng nói, số liệu đo lường  Hệ thống là những thiết bị hay thuật tóan, để thực hiện những tác động theo một qui tắc nào đó lên tín hiệu để tạo ra một tín hiệu khác HT [K] Tín hiệu ngõ vào Tín hiệu ngõ ra [K] biểu thị cho thuật tóan xử lý CuuDuongThanCong.com https://fb.com/tailieudientucntt 2. Phân loại 2.1. Tín hiệu xác định và tín hiệu ngẫu nhiên 2.2. Tín hiệu liên tục và rời rạc 2.3. Tín hiệu năng lượng – Tín hiệu công suất 2.4. Các phân loại khác CuuDuongThanCong.com https://fb.com/tailieudientucntt 2.1.Tín hiệu xác định và tín hiệu ngẫu nhiên  Tín hiệu xác địn...

pdf22 trang | Chia sẻ: quangot475 | Lượt xem: 236 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Bài giảng Lý thuyết tín hiệu - Chương I: Một số khái niệm căn bản - Võ Thị Thu Sương, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chương 1: Một số khái niệm căn bản 1. Tín hiệu – Tin tức – Hệ thống 2. Phân lọai tín hiệu 3. Biểu diễn giải tích tín hiệu CuuDuongThanCong.com https://fb.com/tailieudientucntt 1. Tín hiệu- Tin tức- Hệ thống  Tín hiệu là biểu hiện vật lý của tin tức mà nó mang từ nguồn tin đến nơi nhận tin. Mô hình lý thuyết: hàm theo thời gian x(t)  Tin tức là những nội dung cần truyền đi qua hình ảnh, tiếng nói, số liệu đo lường  Hệ thống là những thiết bị hay thuật tóan, để thực hiện những tác động theo một qui tắc nào đó lên tín hiệu để tạo ra một tín hiệu khác HT [K] Tín hiệu ngõ vào Tín hiệu ngõ ra [K] biểu thị cho thuật tóan xử lý CuuDuongThanCong.com https://fb.com/tailieudientucntt 2. Phân loại 2.1. Tín hiệu xác định và tín hiệu ngẫu nhiên 2.2. Tín hiệu liên tục và rời rạc 2.3. Tín hiệu năng lượng – Tín hiệu công suất 2.4. Các phân loại khác CuuDuongThanCong.com https://fb.com/tailieudientucntt 2.1.Tín hiệu xác định và tín hiệu ngẫu nhiên  Tín hiệu xác định là tín hiệu mà quá trình thời gian của tín hiệu được biểu diễn bằng một hàm thực hay phức. Ví dụ: ( ) 2 2 0 2 c o s ( 2 .5 0 )( )u t t V ...... 0.01 ( )u t 2220 t0.01 x(t) t  Tín hiệu ngẫu nhiên(THNN): là tín hiệu mà quá trình thời gian của nó không đóan trước được. Ví dụ: tiếng nói, hình ảnh, âm nhạc đều không có biểu diễn tóan học. Để nghiên cứu THNN ta phải tiến hành quan sát thống kê để tìm ra qui luật phân bố của nó. CuuDuongThanCong.com https://fb.com/tailieudientucntt 2.2. Tín hiệu liên tục và rời rạc )(tx t Tín hiệu tương tự (biên độ, thời gian liên tục) )(tx t Tín hiệu lượng tử (biên độ rời rạc, thời gian liên tục) )(tx t Tín hiệu rời rạc (biên độ liên tục, thời gian rời rạc) )(tx t Tín hiệu số (biên độ, thời gian rời rạc) CuuDuongThanCong.com https://fb.com/tailieudientucntt 2.3. Tín hiệu năng lượng – TH công suất  Tín hiệu năng lượng hữu hạn gồm các tín hiệu có thời hạn hữu hạn, các tín hiệu quá độ xác định và ngẫu nhiên.  Tín hiệu công suất trung bình hữu hạn gồm các tín hiệu tuần hòan, tín hiệu có thời hạn vô hạn có giá trị tiến đến hằng số khác không khi t dần ra vô cùng CuuDuongThanCong.com https://fb.com/tailieudientucntt 2.4. Các phân lọai khác  Dựa vào bề rộng phổ của tín hiệu có thể phân lọai tín hiệu như sau: tín hiệu (TH) tần số thấp, TH tần số cao, TH dải rộng, TH dải hẹp.  Dựa vào biên độ của TH có thể phân lọai thành TH có biên độ hữu hạn, TH có biên độ vô hạn.  Dựa vào biến thời gian của TH có thể phân lọai thành TH có thời hạn hữu hạn, TH có thời hạn vô hạn.  Tín hiệu nhân quả: là tín hiệu có giá trị bằng không khi t<0. CuuDuongThanCong.com https://fb.com/tailieudientucntt 3. Biểu diễn giải tích tín hiệu 3.1. Biểu diễn rời rạc 3.1.1 Tín hiệu trực giao 3.1.2 Biểu diễn tín hiệu bằng chuỗi hàm trực giao 3.1.3 Một số ví dụ về biểu diễn rời rạc 3.2. Biểu diễn liên tục 3.2.1 Dạng tổng quát 3.2.2 Một số ví dụ về phép biến đổi liên tục CuuDuongThanCong.com https://fb.com/tailieudientucntt 3.1. Biểu diễn rời rạc 3.1.1 Tín hiệu trực giao 1 2 1 2 . *,x t x t x t x t d t                                          Tích vô hướng giữa hai tín hiệu được định nghĩa Nếu tích vô hướng này bằng không thì ta nói hai tín hiệu trực giao Tín hiệu trực chuẩn )()( 2 )( 1 txtxtx  1))(),(( txtx Nếu và Tín hiệu chuẩn hóa       21 21 21 1 0 ),( xx xx xx CuuDuongThanCong.com https://fb.com/tailieudientucntt 3.1.2 Biểu diễn tín hiệu bằng chuỗi hàm trực giao    N n nn ttx 1 )()(          ni ni ni 1 0 , Tập hàm được chọn, thường là tập hàm trực chuẩn, tức là: )( t n  Hệ số khai triển chuỗi được xác định theo phương trình , 1 ( ( ) , ( ) ) ( , ) N n i n n i n x t t       ),( ii x  Khi đó CuuDuongThanCong.com https://fb.com/tailieudientucntt 3.1.3 Một số ví dụ về biểu diễn rời rạc a. Chuỗi Fourier lượng giác b. Chuỗi Fourier phức CuuDuongThanCong.com https://fb.com/tailieudientucntt a. Chuỗi Fourier lượng giác          ...2,1); 2 sin( 2 ); 2 cos( 2 ; 1 )( nt T n T t T n TT t n   Chuỗi Fourier lượng giác được tạo bởi tập hàm trực chuẩn là tập hàm điều hòa sau: T: chu kỳ tín hiệu             1 0 ) 2 sin( 2 ) 2 cos( 21 )( n nn t T n T t T n TT tx     Tín hiệu x(t) có thể biểu diễn bằng chuỗi Fourier nn  ,, 0           T dttx TT xx 0 00 )( 11 ,, dtt T ntx T t T n T x T n ) 2 cos()( 2 ) 2 cos( 2 , 0            dtt T ntx T t T n T x T n ) 2 sin()( 2 ) 2 sin( 2 , 0            Trong đó các hệ số khai triển được xác định như sau: CuuDuongThanCong.com https://fb.com/tailieudientucntt a. Chuỗi Fourier lượng giác n n n a b arctg tdtx T a T  0 0 )( 1 tdtntx T a T n  0 0 )(cos)( 2  dttntx T b T n  0 0 )(sin)( 2  22 nnn bac  T   2 0  a0, an, bn, cn: hệ số khai triển chuỗi Fourier. tần số cơ bản của tín hiệu T: chu kỳ của tín hiệu 0 )( ) ( c o s s in 0 0 1 x t a a n t b n t n n n       (1)           1 0 cos 0 )( n ntnncatx  (2) CuuDuongThanCong.com https://fb.com/tailieudientucntt a. Chuỗi Fourier lượng giác- Ví dụ 2/2/ X t ...... T-T x(t) 0 2 X a  2 , 1, 5 , 9 . . . 2 s in 2 2 , 3 , 7 ,1 1 . . . n X n X n n a n X n n               0 n b    1 2 0 1 2 ( ) 1 c o s 2 n n n o d d X X x t n t n                1 2 2 1 , n n X a n o d d n         2T  CuuDuongThanCong.com https://fb.com/tailieudientucntt a. Chuỗi Fourier lượng giác- Ví dụ          tn n tt ttt A 0 00 000 cos 1 ...9cos 9 1 7cos 7 1 5cos 5 1 3cos 3 1 cos 4     A T t T   2 0  Sóng vuông n=1 n=3 n=1 n=5 n=41 t CuuDuongThanCong.com https://fb.com/tailieudientucntt b. Chuỗi Fourier phức          ...2,1,0; 1 )( 2 ne T t t T jn n   Tập hàm điều hòa phức trực chuẩn được chọn: T: chu kỳ tín hiệu     n t T jn n e T tx   2 1 )( 2 2 0 1 1 , ( ) T jn t jn t T T n x e x t e d t T T            Chuỗi Fourier phức tương ứng     n tjn n eXtx 0)(  T   2 0  Hay:    T tjn n dtetx T X 0 0)( 1  (3) nn XC 200 X 2 nn n jba X   Chuỗi (1), (2), (3) có quan hệ với nhau như sau: CuuDuongThanCong.com https://fb.com/tailieudientucntt a. Chuỗi Fourier phức - Ví dụ 2/2/ X t ...... T-T x(t) 0 2 2 1 s in 2 jn t n X n X X e d t T n          0 ( ) s in c o s 2n X n x t n t n          CuuDuongThanCong.com https://fb.com/tailieudientucntt 3.2. Biểu diễn liên tục TH 3.2.1 Dạng tổng quát    dtsttxsX ),()()(    dstssXtx ),()()(  )()( sXtx  ),( st ),( ts Biến đổi thuận Biến đổi ngược được gọi là nhân biến đổi được gọi là nhân liên hợp CuuDuongThanCong.com https://fb.com/tailieudientucntt 3.2.2 Một số ví dụ về phép biến đổi liên tục Biến đổi Fourier           ( ) ( ) ( ) j t X F x t x t e d t ( ) ( )x t X                  1 1 ( ) ( ) 2 j t x t F X X e d Biến đổi Laplace   0 ( ) ( ) ( ) s t X s L x t x t e d t        1 1 ( ) t 0 2( ) ( ) 0 t< 0 c j s t c j X s e d s jx t L X s               )()( sXtx   js  Biến đổi Hilbert )(ˆ)( txtx        d t x txHtx      )(1 )()(ˆ       d t x txHtx       )(ˆ1 )(ˆ)( 1 CuuDuongThanCong.com https://fb.com/tailieudientucntt • Biến đổi Fourier-Ví dụ A     f fA fX   s in  f X ( f ) 1 τ 2 τ 3 τ 4 τ 6 τ 5 τ 7 τ -1 τ -2 τ -3 τ -4 τ -6 τ - 5 τ -7 τ t A τ 2 τ x(t) τ 2 CuuDuongThanCong.com https://fb.com/tailieudientucntt Bài tập 1. Tìm chuỗi Fourier lượng giác và chuỗi Fourier phức các tín hiệu sau X(t) -1 3 4-4 ...... -3 1 t ...... 2  4sin2( ) tx t  2    ...... 2 ( )x t  2   ...... 4  ( )x t 4    CuuDuongThanCong.com https://fb.com/tailieudientucntt Bài tập 2. Tìm X() của các tín hiệu sau: 2 . ( ) t a x t e   1 1 0 . ( ) 1 0 1 0 1 t t b x t t t t               1 1 0 . ( ) 1 0 1 0 1 t c x t t t             3. Tìm x(t) biết các X() như sau: . ( )a X e     2 . ( ) 2 0 2 b X            CuuDuongThanCong.com https://fb.com/tailieudientucntt

Các file đính kèm theo tài liệu này:

  • pdfly_thuyet_tin_hieu_vo_thi_thu_suong_chuongi_mot_so_khai_niem_can_ban_cuuduongthancong_com_3768_21738.pdf
Tài liệu liên quan