Tài liệu Advanced Econometrics - Part I - Chapter 3: Stochastic Regression Model: Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 1 University of Economics - HCMC - Vietnam
Chapter 3
STOCHASTIC REGRESSION MODEL
I. CONSISTENCY:
1. Definition:
• Let nθˆ be a random variable. If for any 0>∀ε we have 0}0ˆlim{ =>−θθn then θ is
probability limit of nθˆ .
• If nθˆ is an estimator for θ , then nθˆ is said a consistent estimator of θ .
notation: θθ =
∞→ nn
p ˆlim
Note:
A sufficient condition for this to hold is if Bias ( θθ →)nˆ and Var( θθ →)nˆ when ∞→n
2. Cramer Theorem:
If:
=
=
∞→
∞→
0)ˆ(lim)(
)ˆ(lim)(
nn
nn
Varii
Ei
θ
θθ
then θθ =
∞→ nn
p ˆlim
θ
)ˆ( nf θ )ˆ( 100θf
)ˆ( 50θf
)ˆ( 10θf
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 2 University of Economics - HCMC - Vietnam
Example: niNxi ,3,2,1),(~
2 =σµ sample size.
Get ∑
=
=
n
i
ixn
X
1
1 →
...
11 trang |
Chia sẻ: honghanh66 | Lượt xem: 700 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Advanced Econometrics - Part I - Chapter 3: Stochastic Regression Model, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 1 University of Economics - HCMC - Vietnam
Chapter 3
STOCHASTIC REGRESSION MODEL
I. CONSISTENCY:
1. Definition:
• Let nθˆ be a random variable. If for any 0>∀ε we have 0}0ˆlim{ =>−θθn then θ is
probability limit of nθˆ .
• If nθˆ is an estimator for θ , then nθˆ is said a consistent estimator of θ .
notation: θθ =
∞→ nn
p ˆlim
Note:
A sufficient condition for this to hold is if Bias ( θθ →)nˆ and Var( θθ →)nˆ when ∞→n
2. Cramer Theorem:
If:
=
=
∞→
∞→
0)ˆ(lim)(
)ˆ(lim)(
nn
nn
Varii
Ei
θ
θθ
then θθ =
∞→ nn
p ˆlim
θ
)ˆ( nf θ )ˆ( 100θf
)ˆ( 50θf
)ˆ( 10θf
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 2 University of Economics - HCMC - Vietnam
Example: niNxi ,3,2,1),(~
2 =σµ sample size.
Get ∑
=
=
n
i
ixn
X
1
1 →
=
=
µ
σ
)(
)(
2
XE
n
XVar
So
=
=
∞→
∞→
µ)(lim
0)(lim
XE
XVar
n
n then X is a consistent estimator of µ: µ=
∞→
)(lim Xp
n
Note:
• If an estimator is "inconsistent", then it is a useless estimator (unreliable).
• There are many situations where OLS estimator is inconsistent. Need to be clear with
this.
3. Slutsky Theorem:
Let F() be a continuous function, then:
)]ˆ(lim),...,ˆ(lim),ˆ(lim[)ˆ,...,ˆ,ˆ(lim ,,2,1,,2,1 nknnnnnnknnn pppFFp θθθθθθ ∞→∞→∞→∞→ =
EX: if Cp n =)ˆlim(θ → )()]ˆ(lim[ CFFp n =θ
Cp n /1]ˆ/1lim[ =θ
33 ]ˆlim[ Cp n =θ
Cn ep =)ˆlim[exp(θ
...
)ˆlim().ˆlim()ˆ.ˆlim( ,2,1,1,1 nnnn ppp θθθθ =
A and B are stochastic matrices: )lim().lim()lim( BpApABp =
also 11 )lim()lim( −− = ApAp if A is non-singular.
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 3 University of Economics - HCMC - Vietnam
II. CLASSICAL STOCHASTIC REGRESSION MODEL:
Now, consider the LS model, first under our standard assumption. However, we will relax
some of them.
• Don't need normality.
• X can be random, just assume that {xi, εi} is a random & independent sequence.
Model:
(1) εβ +=
×kn
XY
(2) X and ε are generated independently of each other and kXRank =)( .
(3) E(ε|X) = 0
(4) E(εε'|X) = σ2I
(5) X consists of stationary random variables with:
XX
k
i
kn
i XXE Σ=
′
×× 1
and ∑
=
′=′
n
i
ii XXn
pXX
n
p
1
1lim)1lim( = XXii XXE Σ=′)(
(Because X now is random).
Stationary random variable: Xi =
ik
i
i
x
x
x
3
2
1
First and second moments are constants:
11 ××
=
k
x
k
iXE µ
1×k
iX
: the ith row of
1×k
X
= ith observation on all k variables
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 4 University of Economics - HCMC - Vietnam
])'()([
1
)(
11
3
2
k
Xi
k
Xi
ik
i
i
i XXE
x
x
x
VarCovXVarCov
××
−−=
= µµ = matrix of constants.
XXΣ = population 2
nd moment matrix.
XX
n
'1 = sample 2nd moment matrix.
Recall:
=
∑∑∑∑ ∑∑
∑∑∑∑∑∑
∑∑∑
2
32
232
2
22
32
...
...
...
'
ikiikiikik
ikiiiii
ikii
XXXXXX
XXXXXX
XXXn
XX
→
∑
=
′=
n
i
ii XXXX
1
'
1. Unbiasedness of OLSβˆ :
εββ
random
XXX ′′+= −1)(ˆ ( YXXX ′′=
−1)(βˆ )
→ ])/
ˆ([)ˆ( XEEE X ββ ↓
= (law of iterated expectation).
expectation of βˆ conditional on X.
XE : Expectation over value of X.
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 5 University of Economics - HCMC - Vietnam
→ }])({[)
ˆ( 1 XXXXEEE X εββ ′′+=
−
}]){([
1 XXXXEEX εβ ′′+=
−
])(}.){([
0
1
XEXXXXEEX εβ ′′+=
−
(by assumption 2: X & ε are independent).
]0.)([
1 XXXEX ′′+=
−β
ββ =+= )]0(XE
2. VarCov of OLSβˆ :
]))ˆ(ˆ())ˆ(ˆ([)ˆ(
′
−−=
ββ
βββββ EEEVarCov
])()[(
11 −− ′′′′= XXXXXXE εε
}])(){([
11 XXXXXXXEEX
−− ′′′′= εε
}])({}(}){([
11 XXXXEXEXXXXEEX
−− ′′′′= εε
])('.)[(
121 −− ′′′= XXXIXXXEX εσ
IXXEX
21)( εσ
−′=
)ˆ(βE)
ˆ( 1XXE =β )ˆ( 2XXE =β )ˆ( 3XXE =β
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 6 University of Economics - HCMC - Vietnam
3. Consistency of OLSβˆ :
+=
−
n
X
n
XXpp εββ ''limˆlim
1
Note: εββ XXX ′′+= −1)(ˆ = n
X
n
XX ε
β
'' 1−
+
+=
−
n
XpXX
n
pp εββ 'lim'1limˆlim
1
(by Slutsky theorem: plimf(x) = f(plimx))
Σ+= −
n
Xpp XX
ε
ββ
'limˆlim 1
Note:
=
′=Σ=′
n
XXpXX
n
pXXE iiXXii
'lim1lim)(
Apply the Cramer theorem to ε'1 X
n
(i) 0'1lim =
∞→
εX
n
E
n
Because:
=
XX
n
EEX
n
E X εε '
1'1
( )
=
0
'1 XEXX
n
EEX ε
1
00'.1
×
=
=
kX
X
n
E
(ii)
∞→
ε'1lim X
n
CovVar
n
=
∞→ n
XX
n
E
n
1''1lim εε
( )
=
∞→ 2
1''lim
n
XXXEEXn εε
( )
=
∞→ 2
2 1'lim
n
IXXEXn εσ
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 7 University of Economics - HCMC - Vietnam
( )
=
∞→ 2
2
'lim
n
XXEXn
εσ
×=
∞→ nn
XXEXn
2'lim εσ
Note: XXXX
n
i
iiX
n
i
iiX nn
XXE
n
XX
n
EXX
n
E
XX
Σ=Σ=
′=
′=
∑∑
= Σ=
..1)(11'1
11
Then:
=
×
∞→ nn
XXEXn
2'lim εσ 01lim 2 =Σ
∞→ XXn n
σ
We have:
=
=
∞→
∞→
0'1lim
0'1lim
ε
ε
X
n
VarCov
X
n
E
n
n
→ 0'1lim =
εX
n
p (Cramer's Theorem).
→
Σ+= −
n
Xpp XX
ε
ββ
'limˆlim 1
ββ =Σ+= − 0.1XX
→ βˆ
is a consistent estimator of β
III. LIMITING DISTRIBUTIONS AND ASYMPTOTIC DISTRIBUTIONS:
1. Definition:
Let zn be a random variable with probability distribution F(zn) and let z be another
random variable with probability distribution F(z).
If Fn(zn) converges to F(z) then F(z) is the limiting distribution of Fn(zn).
Converges means:
0)()(lim =−
∞→
zFzF nnn
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 8 University of Economics - HCMC - Vietnam
Notation )()( zFzF dn →
zz dn → or equivalently write: )(zFz
d
n →
Example: )1,0(][ Nt
d
r →
2. Central limit theorem:
If X1, X2, ... Xn is a random sample from some distribution with mean µ, variance σ2.
Then: ),0()( 2σµ NXn d→− .
3. Proposition:
Let wn be a random variable with plimwn = w and zn has limiting distribution of F(z).
Then the limiting distribution of wnzn is equal to w.F(z) = plimwn.F(z).
The asymptotic distribution of X is defined in terms of the limiting distribution of a
related random variable )( µ−Xn , which has a non-degenerate limiting distribution
),0()( 2σµ NXn d→−
→−
n
NX d
2
,0)( σµ is the asymptotic distribution of )( µ−X
→
n
NX
a 2
,~ σµ
IV. ASYMPTOTIC DISTRIBUTION OF βˆ
Recall:
εββ XXX ′′+=
−1)(ˆ
ββ =)ˆ(E
ββ =)ˆlim(p → consistency.
12 )'()ˆ( −= XXEVarCov Xεσβ
0)'( =εXE
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 9 University of Economics - HCMC - Vietnam
12 )'()ˆ( −= XXEVarCov Xεσβ
=
XX
n
E ''1 εε XXΣ
2
εσ
Recall:
),0()( 2σµ NXn d→− →
n
NX
a 2
,~ σµ
),0()ˆ(
1 kkk
d
n QNn
××
→−θθ →
Q
n
N
a
n
1,~ˆ θθ where Q
n
1 : ( )nasyVarCov θˆ
For βˆ :
=
=−
−Σ
−
nX
n
XX
n
n
XXp
εββ '1'1)ˆ(
1lim
1
Because: 0'1 =
εX
n
E (E(X'ε) = 0
=
n
XX
n
E 1''1 εε XXXXn
IE Σ=
22 '1 εε σσ
Then by the central limit theorem:
ε'1 X
n
n ~ ),0( 2
1 kk
XXk
N
××
Σεσ
→
n
i
X
n 1
'1
=
ε is a random sample from some distribution with mean 0 & variance
kk
XX
×
Σ2εσ
Consider: ∑
=
=
n
i
iwX
1
'ε → wi = Xiεi = i
ki
i
i
X
X
X
ε
3
2
1
→ 0)()()()(
0
===
iiiXiii
XEXEXEwE
X
εε
µ
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 10 University of Economics - HCMC - Vietnam
=′= )()( iiiii XXEwVarCov εε ( ) XXXXE Σ= 22 ' εε σσ
Then by the central limit theorem:
ε'1 X
n
n = ~01
11
−
×
=
∑ k
n
i
iwn
n ),0( 2
1 kk
XXk
N
××
Σεσ
Then: nX
n
XX
n
n
=−
−
εββ '1'1)ˆ(
1
1−Σ→ XX
d ),0( 2
1 kk
XXk
N
××
Σεσ
→d )',0( 211
1 ε
σ−−
×
ΣΣΣ XX
I
XXXXk
N ( XXΣ symmetric).
Note: Z ~ ),0( XXN Σ
W = cZ → w ~ )',0( ccN XXΣ
XXΣ symmetric )( γµβµγ X+→
So: →− dn )ˆ( ββ ),0( 21 εσ
−Σ XXN
a
~βˆ ),(
)ˆ(
2
1
β
εσβ
asyVarCov
XX n
N −Σ
nXX
2
1 εσ−Σ =
1
'1lim
−
XX
n
p
n
2
εσ
= ( )
1
'lim
−
XXpn
n
2
εσ = )'( XXE 2εσ
Note:
XXΣ = )( iiX XXE ′
( )
kk
XX
n
i
XX
n
i
ii
n
i
ii nXXEXXEXXE
×===
Σ=Σ=
′=
′= ∑∑∑
111
)('
== − 21)'()( εσXXEwVarCov i
12 ][ −Σ XXnεσ = nXX
2
1 εσ−Σ
Advanced Econometrics Chapter 3: Stochastic Regression Model
Nam T. Hoang
University of New England - Australia 11 University of Economics - HCMC - Vietnam
Remember: n
XXEXXE iiXX
1)'()( =′=Σ
→ XXnXXE Σ=)'(
→ The more observations we have, the smaller variance of βˆ are.
Các file đính kèm theo tài liệu này:
- chapter_03_stochastic_regression_model_8234.pdf