Tài liệu Advanced Econometrics - Part I - Chapter 3: Stochastic Regression Model: Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 1 University of Economics - HCMC - Vietnam 
Chapter 3 
STOCHASTIC REGRESSION MODEL 
I. CONSISTENCY: 
1. Definition: 
• Let nθˆ be a random variable. If for any 0>∀ε we have 0}0ˆlim{ =>−θθn then θ is 
probability limit of nθˆ . 
• If nθˆ is an estimator for θ , then nθˆ is said a consistent estimator of θ . 
notation: θθ =
∞→ nn
p ˆlim 
Note: 
A sufficient condition for this to hold is if Bias ( θθ →)nˆ and Var( θθ →)nˆ when ∞→n 
2. Cramer Theorem: 
 If: 
=
=
∞→
∞→
0)ˆ(lim)(
)ˆ(lim)(
nn
nn
Varii
Ei
θ
θθ
 then θθ =
∞→ nn
p ˆlim 
θ
)ˆ( nf θ )ˆ( 100θf
)ˆ( 50θf
)ˆ( 10θf
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 2 University of Economics - HCMC - Vietnam 
Example: niNxi ,3,2,1),(~
2 =σµ sample size. 
 Get ∑
=
=
n
i
ixn
X
1
1 →
...
                
              
                                            
                                
            
 
            
                
11 trang | 
Chia sẻ: honghanh66 | Lượt xem: 988 | Lượt tải: 0
              
            Bạn đang xem nội dung tài liệu Advanced Econometrics - Part I - Chapter 3: Stochastic Regression Model, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 1 University of Economics - HCMC - Vietnam 
Chapter 3 
STOCHASTIC REGRESSION MODEL 
I. CONSISTENCY: 
1. Definition: 
• Let nθˆ be a random variable. If for any 0>∀ε we have 0}0ˆlim{ =>−θθn then θ is 
probability limit of nθˆ . 
• If nθˆ is an estimator for θ , then nθˆ is said a consistent estimator of θ . 
notation: θθ =
∞→ nn
p ˆlim 
Note: 
A sufficient condition for this to hold is if Bias ( θθ →)nˆ and Var( θθ →)nˆ when ∞→n 
2. Cramer Theorem: 
 If: 
=
=
∞→
∞→
0)ˆ(lim)(
)ˆ(lim)(
nn
nn
Varii
Ei
θ
θθ
 then θθ =
∞→ nn
p ˆlim 
θ
)ˆ( nf θ )ˆ( 100θf
)ˆ( 50θf
)ˆ( 10θf
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 2 University of Economics - HCMC - Vietnam 
Example: niNxi ,3,2,1),(~
2 =σµ sample size. 
 Get ∑
=
=
n
i
ixn
X
1
1 →
=
=
µ
σ
)(
)(
2
XE
n
XVar
 So 
=
=
∞→
∞→
µ)(lim
0)(lim
XE
XVar
n
n then X is a consistent estimator of µ: µ=
∞→
)(lim Xp
n
Note: 
• If an estimator is "inconsistent", then it is a useless estimator (unreliable). 
• There are many situations where OLS estimator is inconsistent. Need to be clear with 
this. 
3. Slutsky Theorem: 
Let F() be a continuous function, then: 
)]ˆ(lim),...,ˆ(lim),ˆ(lim[)ˆ,...,ˆ,ˆ(lim ,,2,1,,2,1 nknnnnnnknnn pppFFp θθθθθθ ∞→∞→∞→∞→ = 
EX: if Cp n =)ˆlim(θ → )()]ˆ(lim[ CFFp n =θ 
 Cp n /1]ˆ/1lim[ =θ 
 33 ]ˆlim[ Cp n =θ 
 Cn ep =)ˆlim[exp(θ 
 ... 
 )ˆlim().ˆlim()ˆ.ˆlim( ,2,1,1,1 nnnn ppp θθθθ = 
 A and B are stochastic matrices: )lim().lim()lim( BpApABp = 
 also 11 )lim()lim( −− = ApAp if A is non-singular. 
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 3 University of Economics - HCMC - Vietnam 
II. CLASSICAL STOCHASTIC REGRESSION MODEL: 
Now, consider the LS model, first under our standard assumption. However, we will relax 
some of them. 
• Don't need normality. 
• X can be random, just assume that {xi, εi} is a random & independent sequence. 
Model: 
(1) εβ +=
×kn
XY 
(2) X and ε are generated independently of each other and kXRank =)( . 
(3) E(ε|X) = 0 
(4) E(εε'|X) = σ2I 
(5) X consists of stationary random variables with: 
 XX
k
i
kn
i XXE Σ=
 ′
×× 1
and ∑
=
′=′
n
i
ii XXn
pXX
n
p
1
1lim)1lim( = XXii XXE Σ=′)( 
(Because X now is random). 
Stationary random variable: Xi =
ik
i
i
x
x
x
3
2
1
First and second moments are constants: 
11 ××
=
k
x
k
iXE µ
 1×k
iX
: the ith row of 
1×k
X
= ith observation on all k variables 
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 4 University of Economics - HCMC - Vietnam 
])'()([
1
)(
11
3
2
 k
Xi
k
Xi
ik
i
i
i XXE
x
x
x
VarCovXVarCov
××
−−=
= µµ = matrix of constants. 
XXΣ = population 2
nd moment matrix. 
XX
n
'1 = sample 2nd moment matrix. 
Recall: 
=
∑∑∑∑ ∑∑
∑∑∑∑∑∑
∑∑∑
2
32
232
2
22
32
...
...
...
'
ikiikiikik
ikiiiii
ikii
XXXXXX
XXXXXX
XXXn
XX
→
∑
=
′=
n
i
ii XXXX
1
'
1. Unbiasedness of OLSβˆ : 
 εββ 
random
XXX ′′+= −1)(ˆ ( YXXX ′′=
−1)(βˆ ) 
→ ])/
ˆ([)ˆ(  XEEE X ββ ↓
= (law of iterated expectation). 
 expectation of βˆ conditional on X. 
 XE : Expectation over value of X. 
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 5 University of Economics - HCMC - Vietnam 
→ }])({[)
ˆ( 1 XXXXEEE X εββ ′′+=
− 
 }]){([
1 XXXXEEX εβ ′′+=
−
 ])(}.){([
0
1
XEXXXXEEX εβ ′′+=
−
 (by assumption 2: X & ε are independent). 
 ]0.)([
1 XXXEX ′′+=
−β 
 ββ =+= )]0(XE 
2. VarCov of OLSβˆ : 
]))ˆ(ˆ())ˆ(ˆ([)ˆ(
′
−−= 
ββ
βββββ EEEVarCov 
 ])()[(
11 −− ′′′′= XXXXXXE εε 
 }])(){([
11 XXXXXXXEEX
−− ′′′′= εε 
 }])({}(}){([
11 XXXXEXEXXXXEEX
−− ′′′′= εε 
 ])('.)[(
121 −− ′′′= XXXIXXXEX εσ 
 IXXEX
21)( εσ
−′= 
)ˆ(βE)
ˆ( 1XXE =β )ˆ( 2XXE =β )ˆ( 3XXE =β
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 6 University of Economics - HCMC - Vietnam 
3. Consistency of OLSβˆ : 
+=
−
n
X
n
XXpp εββ ''limˆlim
1
Note: εββ XXX ′′+= −1)(ˆ = n
X
n
XX ε
β
'' 1−
+ 
+=
−
n
XpXX
n
pp εββ 'lim'1limˆlim
1
 (by Slutsky theorem: plimf(x) = f(plimx)) 
Σ+= −
n
Xpp XX
ε
ββ
'limˆlim 1 
Note: 
=
 ′=Σ=′
n
XXpXX
n
pXXE iiXXii
'lim1lim)( 
Apply the Cramer theorem to ε'1 X
n
(i) 0'1lim =
∞→
εX
n
E
n
 Because: 
=
 XX
n
EEX
n
E X εε '
1'1 
 ( )
=
0
'1 XEXX
n
EEX ε 
1
00'.1
×
=
=
kX
X
n
E 
(ii) 
∞→
ε'1lim X
n
CovVar
n
 
=
∞→ n
XX
n
E
n
1''1lim εε 
 ( ) 
=
∞→ 2
1''lim
n
XXXEEXn εε 
 ( ) 
=
∞→ 2
2 1'lim
n
IXXEXn εσ 
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 7 University of Economics - HCMC - Vietnam 
 ( ) 
=
∞→ 2
2
'lim
n
XXEXn
εσ 
 
×=
∞→ nn
XXEXn
2'lim εσ 
Note: XXXX
n
i
iiX
n
i
iiX nn
XXE
n
XX
n
EXX
n
E
XX
Σ=Σ=
′=
 ′=
 ∑∑
= Σ=
..1)(11'1
11
 
Then:
=
×
∞→ nn
XXEXn
2'lim εσ 01lim 2 =Σ
∞→ XXn n
σ 
We have: 
=
=
∞→
∞→
0'1lim
0'1lim
ε
ε
X
n
VarCov
X
n
E
n
n
 → 0'1lim =
 εX
n
p (Cramer's Theorem). 
→ 
Σ+= −
n
Xpp XX
ε
ββ
'limˆlim 1
ββ =Σ+= − 0.1XX
→ βˆ
is a consistent estimator of β 
III. LIMITING DISTRIBUTIONS AND ASYMPTOTIC DISTRIBUTIONS: 
1. Definition: 
Let zn be a random variable with probability distribution F(zn) and let z be another 
random variable with probability distribution F(z). 
If Fn(zn) converges to F(z) then F(z) is the limiting distribution of Fn(zn). 
Converges means: 
 0)()(lim =−
∞→
zFzF nnn 
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 8 University of Economics - HCMC - Vietnam 
Notation )()( zFzF dn → 
 zz dn → or equivalently write: )(zFz
d
n → 
Example: )1,0(][ Nt
d
r → 
2. Central limit theorem: 
If X1, X2, ... Xn is a random sample from some distribution with mean µ, variance σ2. 
Then: ),0()( 2σµ NXn d→− . 
3. Proposition: 
Let wn be a random variable with plimwn = w and zn has limiting distribution of F(z). 
Then the limiting distribution of wnzn is equal to w.F(z) = plimwn.F(z). 
The asymptotic distribution of X is defined in terms of the limiting distribution of a 
related random variable )( µ−Xn , which has a non-degenerate limiting distribution 
),0()( 2σµ NXn d→− 
→−
n
NX d
2
,0)( σµ is the asymptotic distribution of )( µ−X 
→ 
n
NX
a 2
,~ σµ
IV. ASYMPTOTIC DISTRIBUTION OF βˆ 
Recall: 
 εββ XXX ′′+=
−1)(ˆ 
ββ =)ˆ(E 
ββ =)ˆlim(p → consistency. 
12 )'()ˆ( −= XXEVarCov Xεσβ 
0)'( =εXE 
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 9 University of Economics - HCMC - Vietnam 
12 )'()ˆ( −= XXEVarCov Xεσβ 
 =
 XX
n
E ''1 εε XXΣ
2
εσ 
Recall: 
 ),0()( 2σµ NXn d→− → 
n
NX
a 2
,~ σµ 
 ),0()ˆ(
1 kkk
d
n QNn
××
→−θθ → 
 Q
n
N
a
n
1,~ˆ θθ where Q
n
1 : ( )nasyVarCov θˆ 
For βˆ : 
=
=−
−Σ
−
nX
n
XX
n
n
XXp
εββ '1'1)ˆ(
1lim
1
Because: 0'1 =
 εX
n
E (E(X'ε) = 0 
 =
n
XX
n
E 1''1 εε XXXXn
IE Σ=
 22 '1 εε σσ 
Then by the central limit theorem: 
 
 ε'1 X
n
n ~ ),0( 2
1 kk
XXk
N
××
Σεσ 
→ 
n
i
X
n 1
'1
=
 ε is a random sample from some distribution with mean 0 & variance 
kk
XX
×
Σ2εσ 
Consider: ∑
=
=
n
i
iwX
1
'ε → wi = Xiεi = i
ki
i
i
X
X
X
ε
3
2
1
→ 0)()()()(
0
===
 iiiXiii
XEXEXEwE
X
εε
µ
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 10 University of Economics - HCMC - Vietnam 
=′= )()( iiiii XXEwVarCov εε ( ) XXXXE Σ= 22 ' εε σσ 
Then by the central limit theorem: 
 
 ε'1 X
n
n = ~01
11
−
×
=
∑ k
n
i
iwn
n ),0( 2
1 kk
XXk
N
××
Σεσ 
Then: nX
n
XX
n
n 
=−
−
εββ '1'1)ˆ(
1
1−Σ→ XX
d ),0( 2
1 kk
XXk
N
××
Σεσ
→d )',0( 211
1 ε
σ−−
×
ΣΣΣ XX
I
XXXXk
N  ( XXΣ symmetric). 
Note: Z ~ ),0( XXN Σ 
 W = cZ → w ~ )',0( ccN XXΣ 
 XXΣ symmetric )( γµβµγ X+→ 
So: →− dn )ˆ( ββ ),0( 21 εσ
−Σ XXN 
a
~βˆ ),(
)ˆ(
2
1
β
εσβ
asyVarCov
XX n
N −Σ 
nXX
2
1 εσ−Σ = 
1
'1lim
−
 XX
n
p
n
2
εσ 
 = ( )
1
'lim
−
 XXpn
n
2
εσ = )'( XXE 2εσ 
Note: 
 XXΣ = )( iiX XXE ′ 
( )
kk
XX
n
i
XX
n
i
ii
n
i
ii nXXEXXEXXE
×===
Σ=Σ=
 ′=
 ′= ∑∑∑
111
)(' 
== − 21)'()( εσXXEwVarCov i
12 ][ −Σ XXnεσ = nXX
2
1 εσ−Σ 
Advanced Econometrics Chapter 3: Stochastic Regression Model 
Nam T. Hoang 
University of New England - Australia 11 University of Economics - HCMC - Vietnam 
Remember: n
XXEXXE iiXX
1)'()( =′=Σ 
 → XXnXXE Σ=)'( 
→ The more observations we have, the smaller variance of βˆ are. 
            Các file đính kèm theo tài liệu này:
chapter_03_stochastic_regression_model_8234.pdf