Tài liệu Advanced Econometrics - Part I - Chapter 2: Finite Sample Properties Of The OLS Estimator: Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 1 University of Economics - HCMC - Vietnam
Chapter 2
FINITE SAMPLE PROPERTIES OF
THE OLS ESTIMATOR
Y = X.β + ε with ],0[~ 2 IN σε
• rank(X) = k non-stochastic.
ε random → Y random.
• YXXX ′′=
−1)(βˆ ; βˆ is a statistics on a sample, βˆ is random because Y is random. Being
random:
- βˆ has a probability distribution, called the sampling distribution.
- Repeatedly draw all possible random sample of size n calculate " βˆ " each time.
Let explore some statistical properties of the OLS estimator βˆ & build up its sampling
distribution.
I. UNBIASED:
βˆ = YXXX ′′
−1)(
= )()(
1 εβ +′′ − XXXX
= εβ XXXXXXX
I
′′+′′ −− 11 )()(
= εβ XXX ′′+
−1)(
E( βˆ ) = ])([
1 εβ XXXE ′′+ −
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 2 Uni...
15 trang |
Chia sẻ: honghanh66 | Lượt xem: 751 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Advanced Econometrics - Part I - Chapter 2: Finite Sample Properties Of The OLS Estimator, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 1 University of Economics - HCMC - Vietnam
Chapter 2
FINITE SAMPLE PROPERTIES OF
THE OLS ESTIMATOR
Y = X.β + ε with ],0[~ 2 IN σε
• rank(X) = k non-stochastic.
ε random → Y random.
• YXXX ′′=
−1)(βˆ ; βˆ is a statistics on a sample, βˆ is random because Y is random. Being
random:
- βˆ has a probability distribution, called the sampling distribution.
- Repeatedly draw all possible random sample of size n calculate " βˆ " each time.
Let explore some statistical properties of the OLS estimator βˆ & build up its sampling
distribution.
I. UNBIASED:
βˆ = YXXX ′′
−1)(
= )()(
1 εβ +′′ − XXXX
= εβ XXXXXXX
I
′′+′′ −− 11 )()(
= εβ XXX ′′+
−1)(
E( βˆ ) = ])([
1 εβ XXXE ′′+ −
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 2 University of Economics - HCMC - Vietnam
= ])[(
1 εβ XXXE ′′+ −
=
0
1 )()( εβ EXXX ′′+ − = β
⇒ ββ =)
ˆ(E
βˆ is an estimator of β, it is a function of the random sample (the element of Y).
Note: we talk about the sample → that means we talk about Y only. Because X is a constant
- fix matrix. "Repeatedly draw all possible random samples of size n → draw Y".
The least squares estimator is unbiased for β (E(ε) = 0, X is non-stochastic).
→ ])')ˆ(ˆ)()ˆ(ˆ[()ˆ(
ββ
βββββ EEEVarCov −−= εββ XXX ′′=− −1)(ˆ
)
ˆ(βVarCov = ])'
ˆ)(ˆ[( ββββ −−E
= ])'))(()[(
11 εε XXXXXXE ′′′′ −−
= ])(')[(
11 −− ′′′ XXXXXXE εε
=
11 )()'()( −− ′′′ XXXEXXX εε
=
121 )()( −− ′′′ XXXXXX εσ
=
112 )()( −− ′′′ XXXXXX
I
εσ
=
12 )( −′XXεσ
So: )
ˆ(βVarCov =
12 )( −′XXεσ
For the model:
iiii eXXY ++= 3322
~ˆ~ˆ~ ββ
=
3
2
ˆ
ˆ
ˆ
β
β
β
12 )( −′XXεσ = ( )∑ ∑∑∑
∑∑
−
− 2
32
2
3
2
2
2
232
32
2
32
~~~~
1
~~~
~~~
iiiiiii
iii
XXXXXXX
XXX
εσ
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 3 University of Economics - HCMC - Vietnam
=
3
2
ˆ
ˆ
β
β
VarCov
→ )
ˆ(βVar = ( )∑ ∑
∑
−
2
32
2
3
2
2
2
3
2
~~~~
~
iiii
i
XXXX
Xεσ
=
32
2
23
;
2
3
2
2
2
2
32
2
2
2
~~
)~~(
1
~/
ii XXbetweenncorrelatiosample
r
ii
ii
i
n
X
n
X
n
XX
X
∑∑
∑
∑
−
εσ
→ )
ˆ(βVar = ∑ − )1(~ 22322
2
rX i
εσ
determined by:
i.
2
εσ ↑ → )ˆ(βVar ↑
ii.
2
23r ↑ → )ˆ(βVar ↑
iii. Variation in Xi2 ∑ 22
~
iX ↑ → )ˆ(βVar ↓
iv. n sample size ↑ → )
ˆ(βVar ↓
)ˆ(βVarCov = 12 )( −′XXεσ → we don't know
2
εσ → need an estimator for
2
εσ .
Define: 2ˆεσ = kn
ee
−
'
n: observations.
k: number of estimators.
∑= 2' ieee = sum of squares.
• Show 2ˆεσ is an unbiased estimator.
e = Mε → e'e = ε'M'Mε=ε'Mε
• Note: trace of a square matrix.
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 4 University of Economics - HCMC - Vietnam
nn
A
×
is the sum of its principal diagonal elements (= ∑
=
n
i
iia
1
).
Rules: A, B nxn matrix
tr(A+B) = tr(A) + tr(B)
tr(A.B) = tr(B.A)
tr(λA) = λtr(A)
Trace is a linear operation → sum of certain elements.
)'( eeE = )'( εε ME
= )]'([)]'([ MtrEMtrE εεεε =
= )]..[)'( 2 MItrMtrE εσεε =
= )(2 Mtrεσ = )]')'(()([
12 XXXXtrItr n
−−εσ
= )]')'(([ 12
kkI
XXXXtrn
×
−−εσ = )(
2 kn −εσ
And: 2
2 )()'(
ε
ε σ
σ
=
−
−
=
− kn
kn
kn
eeE
So:
22 )ˆ( εε σσ =E →
2ˆεσ is an unbiased estimator of
2
εσ .
II. LINEARITY:
Any estimator that is a linear function of the random sample data is called a linear estimator.
Yi: random sample data.
1
1
1
.)(ˆ
××
−
×
=′′=
nnkAk
YAYXXX β
where A is non-random:
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 5 University of Economics - HCMC - Vietnam
kβ
β
β
ˆ
ˆ
ˆ
2
1
=
knkk
n
n
aXa
aaa
aaa
21
22221
11211
nY
Y
Y
2
1
→ 112121111 ...ˆ knYaYaYa +++=β
→ βˆ , OLS estimator is linear and unbiased for β.
Because βˆ is a linear function of Y and Y is a linear function of ε, → if ε is normal then
βˆ is normal. So the sampling distribution of the OLS estimator of β is:
βˆ ~ N[β,
12 )( −′XXεσ ]
III. EFFICIENCY:
Suppose we have 2 unbiased estimators, 1ˆθ ; 2ˆθ for θ . Then we say 1ˆθ is more efficient
than 2ˆθ if )
ˆ()ˆ( 21 θθ VarVar ≤ .
If
1
1ˆ
×k
θ ;
1
2ˆ
×k
θ are vectors unbiased estimators of
1×k
θ , then 1ˆθ is more efficient than 2ˆθ if
)]ˆ()ˆ([ 21 θθ VV −=∆ is positive semi-definite.
IV. GAUSS - MARKOV THEOREM:
"Under the assumptions of the classical regression model, the least squares estimators
of β, YXXX ′′= −1)(βˆ are the best linear unbiased estimators". (BLUE).
Linear: in Y
Best: Best for any alternative linear on unbiased estimators.
jbVarVar jj ∀≤ )()ˆ(β .
Proof: Let b is any other linear estimator of β:
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 6 University of Economics - HCMC - Vietnam
11
.
×××
=
nnkk
YAb
Unbiased: E(b) = β
E(b) = E(AY) =E(AXβ + Aε)
E(b) = AXβ + 0 = AXβ = β
→ AX =I
Let A = (X'X)-1X' + C where C is any non-stochastic (k×n) matrix.
0')'(]')'[( 11 ==+=+== −− CXCXXXXXXCXXXAXI
I
]][')'[( 1 εβ ++== − XCXXXAYb
εβεβ CCXXXXXXXX
I
+++= −− ')'(')'( 11
εεβ CXXX ++= − ')'( 1
])')([()( ββ −−= bbEbVarCov
}]'')'][(')'{[( 11 εεεε CXXXCXXXE ++= −−
]'')'('')'()'()'()'(')'[( 1111 CCXXXCCXXXXXXXXE εεεεεεεε +++= −−−−
')'('')'()'(')'( 21212112 CCXXCXCXXXXXXXXX
I
εεεε σσσσ +++=
−−−−
)ˆ(
212 ')'(
β
εε σσ
VarCov
CCXX += −
The jth diagonal element:
∑
=
+=
n
i
jijj cVarbVar
1
22)ˆ()( εσβ kjVar j ,1)ˆ( =∀≥ β
→ )( jbVar kjVar j ,1)ˆ( =∀≥ β
→ jβˆ is the best linear unbiased estimator (BLUE).
→ jβˆ is efficient estimator (smallest variance).
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 7 University of Economics - HCMC - Vietnam
V. REVIEW: STATISTICAL INFERENCE:
1. Linear function of normal random variables are also normal:
),(~
11 nnnn
Nu
×××
Σµ
→
11 ×××
=
nnmm
uPZ is normally distributed.
µPuPEPuEZE === )()()(
]))'())(([()( ZEZZEZEZVarCov −−=
])')([( µµ PPuPPuE −−=
''])')([( PPPuuEP Σ=−−=
Σ
µµ
Then )',(~ PPPNZ Σµ
2. Chi-squared distribution:
If ),0(~
1
INZ
r×
then Z'Z has the Chi-squared distribution with r degree of freedom
or 2 ][~' rZZ χ Z'Z
r: number of these independent standard normal variables in the sum of squares:
Theorem: If ),0(~
1
INZ
r×
and
nn
A
×
is idempotent with rank equal to r, then:
i. 2 ][~' rAZZ χ
ii. )()( ArankAtrr ==
3. Eigenvalue - eigenvector problem:
For a square matrix
nn
A
×
, we can find n pairs of ),(
111 ×× n
jj cλ such that:
nn
A
×
=
×1n
jc )(
111 ×× n
jj cλ j = 1,2, ... , n
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 8 University of Economics - HCMC - Vietnam
normalizing: ∑
=
==
n
j
jjj ccc
1
2 )1(1'
The eigenvectors are orthogonal to each other:
)(0' jicc ji ≠∀=
so c = [c1, c2, ..., cn] is an orthogonal matrix:
1'(' −== ccIcc )
Eigenvalue - eigenvector problem:
nn
A
×
=
×1n
jc )(
111 ×× n
jj cλ j = 1,2, ... , n
1' =jj cc )(0' jicc ji ≠∀= cj =
nj
j
j
c
c
c
2
1
Let:
nnnnn
IcccccC
××
=⇒= '][ 21
→ c' = c-1: orthogonal matrix:
][][][ 22112121 nnnn cccAcAcAccccAAC λλλ ===
][ 21 ncccAC = Λ=
Λ
C
n
λ
λ
λ
00
00
00
2
1
where Λ is a diagonal matrix: Λ=Λ= CCACC ''
and also =Λ= )()( RankARank number of no-zero of λj's.
Note: Λ=ACC ' → ')'('' 1111 CCCCACCCC Λ=Λ= −−−−
Remember: 'CCA Λ= and Λ=ACC ' ; C'C = I, C' = C-1
Theorem: Let A be an idempotent matrix with rank = r and let ),0(~
1
INZ
r×
then:
2
][~' rAZZ χ and )()( AtrArank =
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 9 University of Economics - HCMC - Vietnam
Proof: Λ=ACC ' , ),0(~
1
INZ
r×
For A idempotent, λj = 0 or 1
Because: jjj CAC λ= →
2
jjjjj CACAAC λλ ==
So: 2jjC λ = jjC λ → 0)(
2 =− jjjC λλ
→ 0)1( =−jjjC λλ → 0=jλ or 1=jλ
Write: Λ=ACC ' =
0000
0100
0010
0001
There must be r nonzero elements of Λ , because )()()( Λ=Λ== trrankrArank since all
diagonal elements are 0 or 1. (Rule: tr(A.B) = tr(B.A))
Also )()'()( AtrACCtrtr ==Λ so rAtrArank == )()(
),'
11 ×××
=
nnnn
ZCu ),0(~
1
INZ
n×
ICCCZZECCZZCEuuE
I
==== ')'(')''()'(
Contruct quadratic form:
AZZZCACCCZuu '')'('' ==Λ
∑
=
=
n
i
iu
1
2 2
][~ rχ
So if ),0(~ INZ and
nn
A
×
is idempotent with rank equal to r, then
2
][~' rAZZ χ
Extension: So if ),0(~ 2 INZ σ , then 2 ][2 ~
'
r
AZZ
χ
σ
4. Other distribution:
Let Z be N(0,I) and let W be 2 ][rχ and let Z and W be independently distributed, then:
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 10 University of Economics - HCMC - Vietnam
][~ rt
r
W
Z
has the t-distribution with r degree of freedom.
Let W be 2 ][rχ and let v be
2
][sχ and W and v be independently distributed, then:
r
sF
s
v
r
W
~
has the F-distribution with r (numerator) and s (denominator) degree of freedom.
VI. TESTING HYPOTHESIS ON INDIVIDUAL COEFFICIENT:
Y = X.β + ε with ],0[~ 2 IN σε
• Recall: βˆ ~ N[β,
12 )( −′XXεσ ]
So jβˆ ~ N[βj, ijXX ])[(
12 −′εσ ]
]1,0[~
)'(
ˆ
12
N
XX jj
jj
−
−
→
σ
ββ
but σ2, so this can't be used directly for constructing test or confidence intervals.
εεεε MMMee '''' == , M is idempotent with with rank(M) = its trace = n-k.
],0[~ 2
)1(
IN
n
σε
×
→ ],0[~/ INσε
⇒
2
][22 ~
''
kn
Mee
−= χσ
εε
σ
So follow theorem: kn
jj
jj
t
kn
ee
XX
−
−
−
−
~
)(
'
)'(
ˆ
2
12
σ
σ
ββ
⇔ kn
jj
jj t
XX
kn
ee −−
−
−
~
)'('
ˆ
1
ˆ 2
σ
ββ
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 11 University of Economics - HCMC - Vietnam
⇔ kn
jj
jj t
XX
−−
−
~
)'(ˆ
ˆ
12σ
ββ
2
ˆ
12 ˆ)'(ˆ
jjj
XX
β
σσ =− = standard error of jβˆ .
Finally: kn
jj t
j
−
−
~
ˆ
ˆ
2
βˆ
σ
ββ
This basic result enables us to test hypothesis about elements of β and to construct
confidence intervals for them (note that we need the assumption of normality of ε's).
EX: 3)4.1(205.0)7.0( 6.02.04.1ˆ iii xxy ++=
H0: β2 = 0
H1: β2 > 0
4
05.0
02.0
)ˆ(
ˆ
=
−
=
−
=
i
jj
SE
t
β
ββ
74.1%)5( =αt d.o.f = n-k =17.
567.2%)1( =αt
αtt > → reject H0.
EX: H0: β1 = 1.5
H1: β2 ≠ 1.5 ( or ≥ 1.5 or ≤ 1.5)
1429.0
7.0
5.14.1
)ˆ(
ˆ
−=
−
=
−
=
i
jj
SE
t
β
ββ
d.o.f = n-k =17.
%5.2%5.2
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 12 University of Economics - HCMC - Vietnam
2/αtt < ⇒ cannot reject H0 at 5%.
VII. CONFIDENCE INTERVALS:
Recall: kn
i
ii
i tSE
t −
−
= ~
)ˆ(
ˆ
β
ββ
so ααα −=−≤≤− 1]Pr[ 2/2/ ttt i
α
β
ββ
αα −=−≤
−
≤− 1]
)ˆ(
ˆ
Pr[ 2/2/ tSE
t
i
ii
αβββββ αα −=+≤≤− 1)]ˆ(ˆ)ˆ(ˆPr[ 2/2/ iiiii SEtSEt
• If we were to take a sample of size "n", construct this repeat many times then
100(1-α)% of such intervals would cover the true value of βi
• If we construct the interval once, there is no guarantee that the internal will cover the
true βi].
• Type of errors: size & power of tests.
Type I: Reject H0 when it is true.
Type II: Accept H0 when it is false.
Assume: Prob(type I error) = α
Prob(type II error) = β
If sample size is fixed: α↓ ⇒ β↑
call α: significant level or size of the test.
→ Fix α and try to design the test so to minimize β.
• Definition: The power of a test is 1- β.
Power = 1 - Pr(accept H0/H0 false)
= Pr(reject H0/H0 false)
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 13 University of Economics - HCMC - Vietnam
• A test is "uniformly most powerful" if its power exceeds that of any other test (for the
same choice of α) over all possible alternative hypothesis.
• A test is "consistent" if its power → 1 as n →∞ for any false hypothesis.
• A test is unbiased of its power never falls below α.
VIII. FAMILY OF F-TEST:
For general linear restrictions, unrestricted model (U-model), original model.
H0: some restrictions on
1×k
β . These define the restricted model (R-model):
dfuESS
rESSESSF
U
URr
dfu /)
/)( −
=
ESSR = error sum of squares from R-model: RRee′
ESSU = error sum of squares from U-model: UU ee′
r: number of restrictions in H0.
dfu: degree of freedom in U-model = n-k.
=2σ
UESS
2σ
UU ee′
2σ
εε M′
=
σ
ε
σ
ε M
′
= 2 ][~ kn−χ
−
−−
2
][2
2
)]([2
~
~
kn
U
rkn
R
ESS
ESS
χ
σ
χ
σ
→ 2 ][22 ~ r
UR ESSESS χ
σσ
−
)/()
/)(
)/()
/)(
2
2
knESS
rESSESS
knESS
rESSESS
U
UR
U
UR
−
−
=
−
−
σ
σ
→ r kn
U
UR F
knESS
rESSESS
−−
− ~
)/()
/)(
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 14 University of Economics - HCMC - Vietnam
Case 1: Join significant of all slopes:
1
12
1
1 −×
=
kk β
β
β H0: 10
1)1(
2 −=→=
×−
kr
k
β
U-model: εβ +=
×1k
XY → ESSU =e'e dfu = n-k
R-model: iiY εβ += 1 → Y+1βˆ
→ ii eYY +=
∑
=
−=
n
i
iR YYESS
1
2)(
→
)/()1(
)1/(
)/('
)1/()')((
2
2
1
2
1
knR
kR
knee
keeYY
F
n
i
i
k
kn −−
−
=
−
−−−
=
∑
=−
−
Case 2:
rk
rk
−
×
=
2
1
1 β
β
β H0:
11
2 0××
=
rr
β
U-model: εβ += XY → ESSU = UU ee′
R-model: εβ +=
×− 1)( rk
XY → ESSU = RRee′
∑
=
−=
n
i
iR YYESS
1
2)(
→
)/()
/)(
knESS
rESSESSF
U
URr
kn −
−
=−
EX: Translog of production function:
εββββββ ++++++= )log(log2/)(log2/)(loglogloglog 6
2
5
2
4321 LKLKLKY
0: 6540 === βββH Cobb-Douglas restrictions.
n = 27 ESSU = 0.67993
r = 3 ESSR = 0.85163
n - k = 21
Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator
Nam T. Hoang
University of New England - Australia 15 University of Economics - HCMC - Vietnam
→ 768.1=−
r
knF . Critical value: 1.3
3
%5,21 =F
→ r knF − < Critical value
⇒ So do not reject H0 and conclude that are consistent with the Cobb-Douglas model.
Case 3: General restrictions.
11 ×××
=
rkkr
CR β
=
2
2
1
β
β
β
β
Restrictions:
[ ] )1(1110
1
11
3
1
2
==→
=+
×××
r
R
rrr
β
ββ
If restrictions:
=
→
=
=
=+
0
1
001
110
)2(
0
1
1
32
β
β
ββ
r
Jarque - Beta statistics:
H0: εi are normally distributed.
H1: εi are not normally distributed.
JB 22~ χ JB = SK
2 +(Kur)2
Reject H0 for large JB.
Reject H0 if JB >7 (critical) or if p-value < 0.05
Các file đính kèm theo tài liệu này:
- chapter_02_finite_sample_properties_of_the_ols_estimator_6532.pdf