Tài liệu Advanced Econometrics - Chapter 7: Generalized Linear Regression Model: Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 1 University of Economics - HCMC - Vietnam
Chapter 7
GENERALIZED LINEAR REGRESSION MODEL
I. MODEL:
Our basic model:
Y = X.β + ε with ],0[~ 2 IN σε
We will now generalize the specification of the error term.
E(ε) = 0, E(εε') = Σ=Ω×nn
2σ .
This allows for one or both of:
1. Heteroskedasticity.
2. Autocorrelation.
The model now is:
(1) εβ += ×knXY
(2) X is non-stochastic and kXRank =)( .
(3) E(ε) =
1
0
×n
(4) E(εε') =
nn×
Σ
nn×
Ω= 2εσ
Heteroskedasticity case:
=Σ
2
2
2
2
1
00
00
00
nσ
σ
σ
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 2 University of Economics - HCMC - Vietnam
Autocorrelation case:
=Σ
−−
−
−
1
1
1
21
21
11
2
...
8 trang |
Chia sẻ: honghanh66 | Lượt xem: 834 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Advanced Econometrics - Chapter 7: Generalized Linear Regression Model, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 1 University of Economics - HCMC - Vietnam
Chapter 7
GENERALIZED LINEAR REGRESSION MODEL
I. MODEL:
Our basic model:
Y = X.β + ε with ],0[~ 2 IN σε
We will now generalize the specification of the error term.
E(ε) = 0, E(εε') = Σ=Ω×nn
2σ .
This allows for one or both of:
1. Heteroskedasticity.
2. Autocorrelation.
The model now is:
(1) εβ += ×knXY
(2) X is non-stochastic and kXRank =)( .
(3) E(ε) =
1
0
×n
(4) E(εε') =
nn×
Σ
nn×
Ω= 2εσ
Heteroskedasticity case:
=Σ
2
2
2
2
1
00
00
00
nσ
σ
σ
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 2 University of Economics - HCMC - Vietnam
Autocorrelation case:
=Σ
−−
−
−
1
1
1
21
21
11
2
nn
n
n
ρρ
ρρ
ρρ
σε
),( itti Corr −= εερ = correlation between errors that are i periods apart.
II. PROPERTIES OF OLS ESTIMATORS:
1. YXXX ′′= −1)(βˆ = )()( 1 εβ +′′ − XXXX
εββ XXX ′′+= −1)(ˆ
βεββ =′′+= − )()()ˆ( 1 EXXXE
βˆ is still an unbiased estimator
2. )ˆ(βVarCov = ])'ˆ)(ˆ[( ββββ −−E
= ])'))(()[(
11 εε XXXXXXE ′′′′ −−
= ])(')[(
11 −− ′′′ XXXXXXE εε
=
11 )()'()( −− ′′′ XXXEXXX εε
=
121 )()()( −− ′Ω′′ XXXXXX σ
12 )( −′≠ XXσ
so standard formula for βσ ˆˆ no longer holds and βσ ˆˆ is a biased estimator of true βσ ˆˆ .
→ βˆ ~ N[β,
112 )())( −− ′Ω′′ XXXXXXσ ]
so the usual OLS output will be misleading, the std error, t-statistics, etc will be based on
12 )'(ˆ −XXεσ not on the correct formula.
3. OLS estimators are no longer best (inefficient).
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 3 University of Economics - HCMC - Vietnam
Note: for non-stochastic X, we care about the efficient of βˆ . Because we know if n↑ →
Var( jβˆ ) ↓ → plim βˆ = β, βˆ is consistent.
4. If X is stochastic:
- OLS estimators are still consistent (when E(ε|X) = 0.
- IV estimators are still consistent (when E(ε|X) ≠ 0).
- The usual covariance matrix estimator of VarCov( βˆ ) which is 12 )'(ˆ −XXεσ will be
inconsistent (n →∞) for the true VarCov( βˆ ).
We need to know how to deal with these issues. This will lead us to some generalized
estimator.
III. WHITE'S HETEROSCEDASCITY CONSISTENT ESTIMATOR OF VarCov( βˆ ).
(Or Robust estimator of VarCov( βˆ )
If we knew σ2Ω then the estimator of the VarCov( βˆ ) would be:
V = 121 )()()( −− ′Ω′′ XXXXXX σ
=
1
2
1 1)(111
−−
′
Ω′
′ XX
n
XX
n
XX
nn
σ
=
11 1)111
−−
′
Σ′
′ XX
n
XX
n
XX
nn
If Σ is unknown, we need a consistent estimator of
Σ′ XX
n
)1 (Note that the number of
unknowns is Σ grows one-for-one with n, but [ ]XX )Σ′ is k×k matrix it does not grow
with n).
Let: XX
n
Σ′=Σ
1*
∑∑
= = ××
′=Σ
n
i
n
j k
j
k
iij XXn 1 1 11
* 1 σ
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 4 University of Economics - HCMC - Vietnam
In the case of heteroskedasticity
=Σ
2
2
2
2
1
00
00
00
nσ
σ
σ
∑
=
′=Σ
n
i
iii XXn 1
2* 1 σ
White (1980) showed that if:
∑
=
′=Σ
n
i
iii XXen 1
2
0
1 then plim(Σ0) = plim(Σ*)
so we can estimate by OLS and then a consistent estimator of V will be:
1
1
2
1 1111ˆ
−
=
−
′
′
′= ∑ XXnXXenXXnnV
n
i
iii
( ) ( ) 101ˆ −− ′Σ′= XXXXnV
Vˆ is consistent estimator for V, so White's estimator for VarCov( βˆ ) is:
( ) ( ) VXXXXXXVarCov ˆˆ')ˆ( 11 =′Σ′= −−β
where:
=Σ
2
2
2
2
1
00
00
00
ˆ
ne
e
e
(Note )ˆ10 Σ=Σ n
Vˆ is consistent for ( ) ( ) 121 −− ′Ω′= XXXXnV σ regardless of the (unknown) form of the
heteroskedasticity (only for heteroskedasticity).
Newey - West produced a corresponding consistent estimator of V when there is
autocorrelation and/or heteroskedasticity.
Note that White's estimator is only for the case of heteroskedasticity and autocorrelation.
White's estimator just modifies the covariance matrix estimator, not βˆ . The t-statistics,
F-statistics, etc will be modified, but only in a manner that is appropriate asymptotically.
So if we have heteroskedasticity or autocorrelation, whether we modify the covariance
matrix estimator or not, the usual t-statistics will be unreliable in finite samples (the
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 5 University of Economics - HCMC - Vietnam
white's estimator of VarCov( βˆ ) only useful when n is very large, n → ∞ the →Vˆ
VarCov( βˆ ).
→ βˆ is still inefficient.
→ To obtain efficient estimators, use generalized lest squares - GLS
A good practical solution is to use White's adjustment, then use Wald test, rather than the
F-test for exact linear restrictions. Now let's turn to the estimation of β, taking account of
the full process for the error term.
IV. GENERALIZED LEAST SQUARES ESTIMATION (GLS):
OLS estimator will be inefficient in finite samples.
1. Assume E(εε') = nn×Σ is known, positive definite.
→ there exists
1×n
jC and
1×n
jλ j = 1,2, ... ,n such that
nn×
Σ
1×n
jC =
1×n
jC
1×n
jλ (characteristic vector C, Eigen-value λ).
→ before C'ΣC = Λ where [ ]nn CCCC 211 =×
=Λ
nλ
λ
λ
00
00
00
2
1
=Λ
nλ
λ
λ
00
00
00
2
1
2/1
)()'(' 2/12/1 ΛΛ=Λ=ΣCC
→ =ΛΣΛ −−
'
2/1
'
2/1 )(')(
HH
CC I=ΛΛΛΛ −− ))()()(( 2/12/12/12/1
→ IHH =Σ '
→ 1111 '' −−−− ==Σ HHIHH
→ HH '=Σ
'2/1 CH −Λ=
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 6 University of Economics - HCMC - Vietnam
Our model: εβ += XY
Pre-multiply by H:
*** ε
εβ HHXHY
XY
+=
→ *** εβ += XY
ε* will satisfy all classical assumption because:
E(ε*ε*') = E[H(εε')H'] = HΣH' = I.
Since transformed model meets classical assumptions, application of OLS to (Y*, X*) data
yields BLUE.
→
**1** ')'(ˆ YXXXGLS
−=β
→ YHHXXHHX
11
'')''( 1
−− Σ
−
Σ
=
→ YXXXGLS
111 ')'(ˆ −−− ΣΣ=β
Moreover:
[ ] [ ]1******1** )'()'(')'()ˆ( −−= XXXEXXXVarCov GLS εεβ
1** )'( −= XX 11 )'( −−Σ= XX
=)
ˆ( GLSVarCov β
11 )'( −−Σ XX
→ [ ])'(,~ˆ 1 XXNGLS −Σββ
Note that: GLSβˆ is BLUE of βˆ → ββ =)
ˆ( GLSE
GLS estimator is just OLS, applied to the transformed model → satisfy all assumptions.
Gauss - Markov theorem can be applied
→ GLSβˆ is BLUE of βˆ .
→ OLSβˆ must be inefficient in this case.
→ )
ˆ()ˆ( OLSjGLSj VarVar ββ ≤ .
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 7 University of Economics - HCMC - Vietnam
Example:
=Σ
2
2
2
2
1
00
00
00
n
known
σ
σ
σ
=Σ→ −
2
2
2
2
1
1
/100
0/10
00/1
nσ
σ
σ
H'H = Σ-1
=→
2
2
2
2
1
/100
0/10
00/1
n
H
σ
σ
σ
*
2
2
22
2
11
2
1
2
2
2
2
1
/
/
/
/100
0/10
00/1
Y
Y
Y
Y
Y
Y
Y
HY
nnnn
=
=
=
σ
σ
σ
σ
σ
σ
==
nnknnn
k
k
XX
XX
XX
HXX
σσσ
σσσ
σσσ
///1
///1
///1
2
222222
111121
*
Transformed model has each observations divided by σi:
+
++
+
=
i
i
i
ik
k
i
i
ii
i XXY
σ
ε
σ
β
σ
β
σ
β
σ
221
1
Apply OLS to this transformed equation → "Weighted Least Squares":
Let: βˆ = GSL estimator.
GLSXY βε
ˆˆ ** −=
kn −
=
εεσ
ˆ'ˆˆ
Then to test: H0: Rβ = q (F Wald test).
),(2
11**
~
ˆ
]ˆ[]')'([]'ˆ[
knr
r
kn Fr
qRRXXRqR
F −
−−
−
−−
=
σ
ββ
if H0 is true.
Advanced Econometrics Chapter 7: Generalized Linear Regression Model
Nam T. Hoang
University of New England - Australia 8 University of Economics - HCMC - Vietnam
and
)(
ˆ'ˆ
]ˆ'ˆˆˆ[
kn
rF
cc
r
kn
−
−′
=− εε
εεεε
where: GLScc XY βε
ˆˆ ** −=
)
ˆ(]')'([')'(ˆˆ 11111 qRRXXRRXX GLSGLSGLSc −ΣΣ−=
−−−−− βββ
is the "constrained" GLS estimator of β.
2. Feasible GLS estimation:
In practice, of course, Σ is usually unknown, and so βˆ cannot be constructed, it is not
feasible. The obvious solution is to estimate Σ, using some Σˆ then construct:
YXXXGLS
111 ˆ')ˆ'(ˆ −−− ΣΣ=β
A practical issue: Σ is an (n×n), it has n(n+1)/2 distinct parameters, allowing for
symmetry. But we only have "n" observations → need to constraint Σ. Typically Σ =
Σ(θ) where θ contain a small number of parameters.
Ex: Heteroskedasticity var(εi) = σ2(θ1+θ2Zi).
+
+
+
=Σ
n
n
z
z
z
21
21
121
00
00
00
θθ
θθ
θθ
just 2 parameters to be estimated to form Σˆ .
Serial correlation:
)(
1
1
1
2
2
1
1
1 ρ
ρρ
ρρ
ρρ
Σ=
=Σ
−
−
−
−
n
n
n
n
only one parameter to be estimated.
• If Σˆ is consistent for Σ then β will be asymptotically efficient for β.
• Of course to apply β we want to know the form of Σ → construct tests.
Các file đính kèm theo tài liệu này:
- chapter_07_generalized_linear_regression_model_9971_4914.pdf