Tài liệu 120 đề toán ôn tập vào lớp 10: 120 Đề ÔN TậP VàO LớP 10
I, một số đề có đáp án
đề 1
Bài 1 : (2 điểm)
a) Tớnh :
b) Giải hệ phương trỡnh :
Bài 2 : (2 điểm)
Cho biểu thức :
a) Rỳt gọn A.
b) Tỡm x nguyờn để A nhận giỏ trị nguyờn.
Bài 3 : (2 điểm)
Một ca nụ xuụi dũng từ bến sụng A đến bến sụng B cỏch nhau 24 km ; cựng lỳc đú, cũng từ A về B một bố nứa trụi với vận tốc dũng nước là 4 km/h. Khi đến B ca nụ quay lại ngay và gặp bố nứa tại địa điểm C cỏch A là 8 km. Tớnh vận tốc thực của ca nụ.
Bài 4 : (3 điểm)
Cho đường trũn tõm O bỏn kớnh R, hai điểm C và D thuộc đường trũn, B là trung điểm của cung nhỏ CD. Kẻ đường kớnh BA ; trờn tia đối của tia AB lấy điểm S, nối S với C cắt (O) tại M ; MD cắt AB tại K ; MB cắt AC tại H.
a) Chứng minh Đ BMD = Đ BAC, từ đú => tứ giỏc AMHK nội tiếp.
b) Chứng minh : HK // CD.
c) Chứng minh : OK.OS = R2.
Bài 5 : (1 điểm)
Cho hai số a và b khỏc 0 thỏa món : 1/a + 1/b = 1/2
Chứng minh phương trỡnh ẩn x sau luụn cú nghiệm :
(x2 + ax + b)(x2 + bx + a) = 0...
166 trang |
Chia sẻ: haohao | Lượt xem: 2650 | Lượt tải: 1
Bạn đang xem trước 20 trang mẫu tài liệu 120 đề toán ôn tập vào lớp 10, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
120 Đề ÔN TậP VàO LớP 10
I, một số đề có đáp án
đề 1
Bài 1 : (2 điểm)
a) Tớnh :
b) Giải hệ phương trỡnh :
Bài 2 : (2 điểm)
Cho biểu thức :
a) Rỳt gọn A.
b) Tỡm x nguyờn để A nhận giỏ trị nguyờn.
Bài 3 : (2 điểm)
Một ca nụ xuụi dũng từ bến sụng A đến bến sụng B cỏch nhau 24 km ; cựng lỳc đú, cũng từ A về B một bố nứa trụi với vận tốc dũng nước là 4 km/h. Khi đến B ca nụ quay lại ngay và gặp bố nứa tại địa điểm C cỏch A là 8 km. Tớnh vận tốc thực của ca nụ.
Bài 4 : (3 điểm)
Cho đường trũn tõm O bỏn kớnh R, hai điểm C và D thuộc đường trũn, B là trung điểm của cung nhỏ CD. Kẻ đường kớnh BA ; trờn tia đối của tia AB lấy điểm S, nối S với C cắt (O) tại M ; MD cắt AB tại K ; MB cắt AC tại H.
a) Chứng minh Đ BMD = Đ BAC, từ đú => tứ giỏc AMHK nội tiếp.
b) Chứng minh : HK // CD.
c) Chứng minh : OK.OS = R2.
Bài 5 : (1 điểm)
Cho hai số a và b khỏc 0 thỏa món : 1/a + 1/b = 1/2
Chứng minh phương trỡnh ẩn x sau luụn cú nghiệm :
(x2 + ax + b)(x2 + bx + a) = 0.
Bài 3:
Do ca nô xuất phát từ A cùng với bè nứa nên thời gian của ca nô bằng thời gian bè nứa: (h)
Gọi vận tốc của ca nô là x (km/h) (x>4)
Theo bài ta có:
Vởy vận tốc thực của ca nô là 20 km/h
Bài 4:
a) Ta có (GT) (2 góc nội tiếp chắn 2 cung băng nhau)
* Do A, M nhìn HK dười 1 góc bằng nhau MHKA nội tiếp.
b) Do BC = BD (do ), OC = OD (bán kính) OB là đường trung trực của CD
CDAB (1)
Xet MHKA: là tứ giác nội tiếp, (góc nt chắn nửa đường tròn) (đl)
HKAB (2)
Từ 1,2 HK // CD
Bài 5:
(*) , Để PT có nghiệm (3)
(**) Để PT có nghiệm thì (4)
Cộng 3 với 4 ta có:
(luôn luôn đúng với mọi a, b)
De 2
Đề thi gồm cú hai trang.
PHẦN 1. TRẮC NGHIỆM KHÁCH QUAN : (4 điểm)
1. Tam giỏc ABC vuụng tại A cú . Giỏ trị cosC bằng :
a). ; b). ; c). ; d).
2. Cho một hỡnh lập phương cú diện tớch toàn phần S1 ; thể tớch V1 và một hỡnh cầu cú diện tớch S2 ; thể tớch V2. Nếu S1 = S2 thỡ tỷ số thể tớch bằng :
a). ; b). ; c). ; d).
3. Đẳng thức xảy ra khi và chỉ khi :
a). x ³ 2 ; b). x ≤ –2 ; c). x ³ –2 và x ≤ 2 ; d). x ³ 2 hoặc x ≤ –2
4. Cho hai phương trỡnh x2 – 2x + a = 0 và x2 + x + 2a = 0. Để hai phương trỡnh cựng vụ nghiệm thỡ :
a). a > 1 ; b). a < 1 ; c). ; d).
5. Điều kiện để phương trỡnh cú hai nghiệm đối nhau là :
a). m < 0 ; b). m = –1 ; c). m = 1 ; d). m = – 4
6. Cho phương trỡnh cú nghiệm x1 , x2. Biểu thức cú giỏ trị :
a). A = 28 ; b). A = –13 ; c). A = 13 ; d). A = 18
7. Cho gúc a nhọn, hệ phương trỡnh cú nghiệm :
a). ; b). ; c). ; d).
8. Diện tớch hỡnh trũn ngoại tiếp một tam giỏc đều cạnh a là :
a). ; b). ; c). ; d).
PHẦN 2. TỰ LUẬN : (16 điểm)
Cõu 1 : (4,5 điểm)
Cho phương trỡnh . Định m để phương trỡnh cú 4 nghiệm phõn biệt và tổng bỡnh phương tất cả cỏc nghiệm bằng 10.
Giải phương trỡnh:
Cõu 2 : (3,5 điểm)
Cho gúc nhọn a. Rỳt gọn khụng cũn dấu căn biểu thức :
Chứng minh:
Cõu 3 : (2 điểm)
Với ba số khụng õm a, b, c, chứng minh bất đẳng thức :
Khi nào đẳng thức xảy ra ?
Cõu 4 : (6 điểm)
Cho 2 đường trũn (O) và (O’) cắt nhau tại hai điểm A, B phõn biệt. Đường thẳng OA cắt (O), (O’) lần lượt tại điểm thứ hai C, D. Đường thẳng O’A cắt (O), (O’) lần lượt tại điểm thứ hai E, F.
Chứng minh 3 đường thẳng AB, CE và DF đồng quy tại một điểm I.
Chứng minh tứ giỏc BEIF nội tiếp được trong một đường trũn.
Cho PQ là tiếp tuyến chung của (O) và (O’) (P ẻ (O), Q ẻ (O’)). Chứng minh đường thẳng AB đi qua trung điểm của đoạn thẳng PQ.
-----HẾT-----
ĐÁP ÁN
PHẦN 1. TRẮC NGHIỆM KHÁCH QUAN : (4 điểm) 0,5đ ´ 8
Cõu
1
2
3
4
5
6
7
8
a).
x
x
b).
x
x
c).
x
x
d).
x
x
PHẦN 2. TỰ LUẬN :
Cõu 1 : (4,5 điểm)
1.
Đặt X = x2 (X ³ 0)
Phương trỡnh trở thành (1)
Phương trỡnh cú 4 nghiệm phõn biệt Û (1) cú 2 nghiệm phõn biệt dương +
(I) +
Với điều kiện (I), (1) cú 2 nghiệm phõn biệt dương X1 , X2.
ị phương trỡnh đó cho cú 4 nghiệm x1, 2 = ; x3, 4 =
+
Vậy ta cú +
Với m = 1, (I) được thỏa món +
Với m = –5, (I) khụng thỏa món. +
Vậy m = 1.
2.
Đặt (t ³ 1)
Được phương trỡnh +
3t2 – 8t – 3 = 0
ị t = 3 ; (loại) +
Vậy
ị x = ± 1. +
Cõu 2 : (3,5 điểm)
1.
(vỡ cosa > 0) +
+
(vỡ cosa < 1) +
2.
+
=
= +
= +
= +
Cõu 3 : (2 điểm)
+
Tương tự,
+
Cộng vế với vế cỏc bất đẳng thức cựng chiều ở trờn ta được điều phải chứng minh. +
Đẳng thức xảy ra Û a = b = c = 1 +
Cõu 4 : (6 điểm)
O
O’
B
A
C
D
E
F
I
P
Q
H
+
1.
Ta cú : ABC = 1v
ABF = 1v
ị B, C, F thẳng hàng. +
AB, CE và DF là 3 đường cao của tam giỏc ACF nờn chỳng đồng quy. ++
2.
ECA = EBA (cựng chắn cung AE của (O) +
Mà ECA = AFD (cựng phụ với hai gúc đối đỉnh) +
ị EBA = AFD hay EBI = EFI +
ị Tứ giỏc BEIF nội tiếp. +
3.
Gọi H là giao điểm của AB và PQ
Chứng minh được cỏc tam giỏc AHP và PHB đồng dạng +
ị ị HP2 = HA.HB +
Tương tự, HQ2 = HA.HB +
ị HP = HQ ị H là trung điểm PQ. +
Lưu ý :
Mỗi dấu “+” tương ứng với 0,5 điểm.
Cỏc cỏch giải khỏc được hưởng điểm tối đa của phần đú.
Điểm từng phần, điểm toàn bài khụng làm trũn.
luôn luôn có nghiệm.
----------------------------------------------------------------------------------------------------------đề 3--
I.Trắc nghiệm:(2 điểm)
Hãy ghi lại một chữ cái đứng trước khẳng định đúng nhất.
Câu 1: Kết quả của phép tính là :
A . 4
B .
C . 16
D . 44
Câu 2 : Giá trị nào của m thì phương trình mx2 +2 x + 1 = 0 có hai nghiệm phân biệt :
A.
B.
C. và
D. và
Câu 3 :Cho nội tiếp đường tròn (O) có . Sđ là:
A . 750
B . 1050
C . 1350
D . 1500
Câu 4 : Một hình nón có bán kính đường tròn đáy là 3cm, chiều cao là 4cm thì diện tích xung quanh hình nón là:
A 9(cm2)
B. 12(cm2)
C . 15(cm2)
D. 18(cm2)
II. Tự Luận: (8 điểm)
Câu 5 : Cho biểu thức A=
a) Tìm x để biểu thức A có nghĩa.
b) Rút gọn biểu thức A.
c) Với giá trị nào của x thì A<1.
Câu 6 : Hai vòi nước cùng chảy vào một bể thì đầy bể sau 2 giờ 24 phút. Nếu chảy riêng từng vòi thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 2 giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu thì đầy bể?
Câu 7 : Cho đường tròn tâm (O) đường kính AB. Trên tia đối của tia AB lấy điểm C (AB>BC). Vẽ đường tròn tâm (O') đường kính BC.Gọi I là trung điểm của AC. Vẽ dây MN vuông góc với AC tại I, MC cắt đường tròn tâm O' tại D.
a) Tứ giác AMCN là hình gì? Tại sao? b) Chứng minh tứ giác NIDC nội tiếp?
c) Xác định vị trí tương đối của ID và đường tròn tâm (O) với đường tròn tâm (O').
Đáp án
Câu
Nội dung
Điểm
1
C
0.5
2
D
0.5
3
D
0.5
4
C
0.5
5
a) A có nghĩa
0.5
b) A=
0.5
=
0.25
=2
0.25
c) A<1 2<1
0.25
0.25
x<1
0.25
Kết hợp điều kiện câu a) Vậy với thì A<1
0.25
6
2giờ 24 phút= giờ
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x (giờ) ( Đk x>0)
0.25
Thời gian vòi thứ hai chảy một mình đầy bể là: x+2 (giờ)
Trong 1 giờ vòi thứ nhất chảy được : (bể)
0.5
Trong 1 giờ vòi thứ hai chảy được : (bể)
Trong 1 giờ cả hai vòi chảy được : +(bể)
Theo bài ra ta có phương trình: +=
0.25
Giaỉ phương trình ta được x1=4; x2=-(loại)
0.75
Vậy: Thời gian vòi thứ nhất chảy một mình đầy bể là:4 giờ
Thời gian vòi thứ hai chảy một mình đầy bể là: 4+2 =6(giờ)
0.25
7
Vẽ hình và ghi gt, kl đúng
0.5
a) Đường kính ABMN (gt) I là trung điểm của MN (Đường kính và dây cung)
0.5
IA=IC (gt) Tứ giác AMCN có đương chéo AC và MN cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau nên là hình thoi.
0.5
b) (góc nội tiếp chắn 1/2 đường tròn tâm (O) )
BN AN.
AN// MC (cạnh đối hình thoi AMCN).
BN MC (1)
(góc nội tiếp chắn 1/2 đường tròn tâm (O') )
BD MC (2)
Từ (1) và (2) N,B,D thẳng hàng do đó (3).
(vì ACMN) (4)
0.5
Từ (3) và (4) N,I,D,C cùng nằm trên đường tròn đường kính NC
Tứ giác NIDC nội tiếp
0.5
c) OBA. O'BC mà BA vafBC là hai tia đối nhau B nằm giữa O và O' do đó ta có OO'=OB + O'B đường tròn (O) và đường tròn (O') tiếp xúc ngoài tại B
0.5
MDN vuông tại D nên trung tuyến DI =MN =MI MDI cân .
Tương tự ta có mà (vì )
0.25
mà
do đó IDDO ID là tiếp tuyến của đường tròn (O').
0.25
Chú ý: Nếu thí sinh làm cách khác đúng vẫn cho điểm tối đa
Đề 4
Câu1 : Cho biểu thức
A=Với xạ;±1
.a, Ruý gọn biểu thức A
.b , Tính giá trị của biểu thức khi cho x=
c. Tìm giá trị của x để A=3
Câu2.a, Giải hệ phương trình:
b. Giải bất phương trình:
<0
Câu3. Cho phương trình (2m-1)x2-2mx+1=0
Xác định m để phương trình trên có nghiệm thuộc khoảng (-1,0)
Câu 4. Cho nửa đường tròn tâm O , đường kính BC .Điểm A thuộc nửa đường tròn đó Dưng hình vuông ABCD thuộc nửa mặt phẳng bờ AB, không chứa đỉnh C. Gọi Flà giao điểm của Aevà nửa đường tròn (O) . Gọi Klà giao điểm của CFvà ED
chứng minh rằng 4 điểm E,B,F,K. nằm trên một đường tròn
Tam giác BKC là tam giác gì ? Vì sao. ?
đáp án
Câu 1: a. Rút gọn A=
b.Thay x= vào A ta được A=
c.A=3 x2-3x-2=0=> x=
Câu 2 : a)Đặt x-y=a ta được pt: a2+3a=4 => a=-1;a=-4
Từ đó ta có
* (1)
*(2)
Giải hệ (1) ta được x=3, y=2
Giải hệ (2) ta được x=0, y=4
Vậy hệ phương trình có nghiệm là x=3, y=2 hoặc x=0; y=4
Ta có x3-4x2-2x-15=(x-5)(x2+x+3)
mà x2+x+3=(x+1/2)2+11/4>0 với mọi x
Vậy bất phương trình tương đương với x-5>0 =>x>5
Câu 3: Phương trình: ( 2m-1)x2-2mx+1=0
Xét 2m-1=0=> m=1/2 pt trở thành –x+1=0=> x=1
Xét 2m-1ạ0=> mạ 1/2 khi đó ta có
= m2-2m+1= (m-1)2³0 mọi m=> pt có nghiệm với mọi m
ta thấy nghiệm x=1 không thuộc (-1,0)
với mạ 1/2 pt còn có nghiệm x==
pt có nghiệm trong khoảng (-1,0)=> -1<<0
=>=>m<0
Vậy Pt có nghiệm trong khoảng (-1,0) khi và chỉ khi m<0
Câu 4:
a. Ta có KEB= 900
mặt khác BFC= 900( góc nội tiếp chắn nữa đường tròn)
do CF kéo dài cắt ED tại D
=> BFK= 900 => E,F thuộc đường tròn đường kính BK
hay 4 điểm E,F,B,K thuộc đường tròn đường kính BK.
b. BCF= BAF
Mà BAF= BAE=450=> BCF= 450
Ta có BKF= BEF
Mà BEF= BEA=450(EA là đường chéo của hình vuông ABED)=> BKF=450
Vì BKC= BCK= 450=> tam giác BCK vuông cân tại B
Đề 5
Bài 1: Cho biểu thức: P =
a,Rút gọn P
b,Tìm x nguyên để P có giá trị nguyên.
Bài 2: Cho phương trình: x2-( 2m + 1)x + m2 + m - 6= 0 (*)
a.Tìm m để phương trình (*) có 2 nghiệm âm.
b.Tìm m để phương trình (*) có 2 nghiệm x1; x2 thoả mãn =50
Bài 3: Cho phương trình: ax2 + bx + c = 0 có hai nghiệm dương phân biệt x1, x2Chứng minh:
a,Phương trình ct2 + bt + a =0 cũng có hai nghiệm dương phân biệt t1 và t2.
b,Chứng minh: x1 + x2 + t1 + t2 4
Bài 4: Cho tam giác có các góc nhọn ABC nội tiếp đường tròn tâm O . H là trực tâm của tam giác. D là một điểm trên cung BC không chứa điểm A.
a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình hành.
b, Gọi P và Q lần lượt là các điểm đối xứng của điểm D qua các đường thẳng AB và AC . Chứng minh rằng 3 điểm P; H; Q thẳng hàng.
c, Tìm vị trí của điểm D để PQ có độ dài lớn nhất.
Bài 5: Cho hai số dương x; y thoả mãn: x + y 1
Tìm giá trị nhỏ nhất của: A =
Đáp án
Bài 1: (2 điểm). ĐK: x
a, Rút gọn: P = P =
b. P =
Để P nguyên thì
Vậy với x= thì P có giá trị nguyên.
Bài 2: Để phương trình có hai nghiệm âm thì:
b. Giải phương trình:
Bài 3: a. Vì x1 là nghiệm của phương trình: ax2 + bx + c = 0 nên ax12 + bx1 + c =0. .
Vì x1> 0 => c. Chứng tỏ là một nghiệm dương của phương trình: ct2 + bt + a = 0; t1 = Vì x2 là nghiệm của phương trình:
ax2 + bx + c = 0 => ax22 + bx2 + c =0
vì x2> 0 nên c. điều này chứng tỏ là một nghiệm dương của phương trình ct2 + bt + a = 0 ; t2 =
Vậy nếu phương trình: ax2 + bx + c =0 có hai nghiẹm dương phân biệt x1; x2 thì phương trình : ct2 + bt + a =0 cũng có hai nghiệm dương phân biệt t1 ; t2 . t1 = ; t2 =
b. Do x1; x1; t1; t2 đều là những nghiệm dương nên
t1+ x1 = + x1 2 t2 + x2 = + x2 2
Do đó x1 + x2 + t1 + t2 4
Bài 4
a. Giả sử đã tìm được điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành . Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên
CH và BH => BD và CD.
Do đó: ABD = 900 và ACD = 900 .
Vậy AD là đường kính của đường tròn tâm O
Ngược lại nếu D là đầu đường kính AD
của đường tròn tâm O thì
tứ giác BHCD là hình bình hành.
Vì P đối xứng với D qua AB nên APB = ADB
nhưng ADB =ACB nhưng ADB = ACB
Do đó: APB = ACB Mặt khác:
AHB + ACB = 1800 => APB + AHB = 1800
Tứ giác APBH nội tiếp được đường tròn nên PAB = PHB
Mà PAB = DAB do đó: PHB = DAB
Chứng minh tương tự ta có: CHQ = DAC
Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 1800
Ba điểm P; H; Q thẳng hàng
c). Ta thấy APQ là tam giác cân đỉnh A
Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ
đạt giá trị lớn nhất ú AP và AQ là lớn nhất hay ú AD là lớn nhất
ú D là đầu đường kính kẻ từ A của đường tròn tâm O
Đề 6
Bài 1: Cho biểu thức:
a). Tìm điều kiện của x và y để P xác định . Rút gọn P.
b). Tìm x,y nguyên thỏa mãn phơng trình P = 2.
Bài 2: Cho parabol (P) : y = -x2 và đờng thẳng (d) có hệ số góc m đi qua điểm M(-1 ; -2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung.
Bài 3: Giải hệ phơng trình :
Bài 4: Cho đường tròn (O) đờng kính AB = 2R và C là một điểm thuộc đường tròn . Trên nửa mặt phẳng bờ AB có chứa điểm C , kẻ tia Ax tiếp xúc với đờng tròn (O), gọi M là điểm chính giữa của cung nhỏ AC . Tia BC cắt Ax tại Q , tia AM cắt BC tại N.
a). Chứng minh các tam giác BAN và MCN cân .
b). Khi MB = MQ , tính BC theo R.
Bài 5: Cho thỏa mãn :
Hãy tính giá trị của biểu thức : M = + (x8 – y8)(y9 + z9)(z10 – x10) .
Đáp án
Bài 1: a). Điều kiện để P xác định là :; .
*). Rút gọn P:
Vậy P =
b). P = 2 = 2
Ta có: 1 + ị ị x = 0; 1; 2; 3 ; 4
Thay vào ta cócác cặp giá trị (4; 0) và (2 ; 2) thoả mãn
Bài 2: a). Đường thẳng (d) có hệ số góc m và đi qua điểm M(-1 ; -2) . Nên phơng trình đờng thẳng (d) là : y = mx + m – 2.
Hoành độ giao điểm của (d) và (P) là nghiệm của phơng trình:
- x2 = mx + m – 2
x2 + mx + m – 2 = 0 (*)
Vì phơng trình (*) có nên phơng trình (*) luôn có hai nghiệm phân biệt , do đó (d) và (P) luôn cắt nhau tại hai điểm phân biệt A và B.
b). A và B nằm về hai phía của trục tung phơng trình : x2 + mx + m – 2 = 0 có hai nghiệm trái dấu m – 2 < 0 m < 2.
Bài 3 :
ĐKXĐ :
Thay vào (1) => x = y = z = 3 .
Ta thấy x = y = z = 3 thõa mãn hệ phơng trình . Vậy hệ phơng trình có nghiệm duy nhất x = y = z = 3.
Bài 4:
a). Xét và .
Ta có: AB là đờng kính của đờng tròn (O)
nên :AMB = NMB = 90o .
M là điểm chính giữa của cung nhỏ AC
nên ABM = MBN => BAM = BNM
=> cân đỉnh B.
Tứ giác AMCB nội tiếp
=> BAM = MCN ( cùng bù với góc MCB).
=> MCN = MNC ( cùng bằng góc BAM).
=> Tam giác MCN cân đỉnh M
b). Xét và có :
MC = MN (theo cm trên MNC cân ) ; MB = MQ ( theo gt)
BMC = MNQ ( vì : MCB = MNC ; MBC = MQN ).
=> => BC = NQ .
Xét tam giác vuông ABQ có AB2 = BC . BQ = BC(BN + NQ)
=> AB2 = BC .( AB + BC) = BC( BC + 2R)
=> 4R2 = BC( BC + 2R) => BC =
Bài 5:
Từ : =>
=>
Ta có : x8 – y8 = (x + y)(x-y)(x2+y2)(x4 + y4).=
y9 + z9 = (y + z)(y8 – y7z + y6z2 - .......... + z8)
z10- x10 = (z + x)(z4 – z3x + z2x2 – zx3 + x4)(z5 - x5)
Vậy M = + (x + y) (y + z) (z + x).A =
Đề 7
Bài 1: 1) Cho đường thẳng d xác định bởi y = 2x + 4. Đường thẳng d/ đối xứng với đường thẳng d qua đường thẳng y = x là:
A.y = x + 2 ; B.y = x - 2 ; C.y = x - 2 ; D.y = - 2x - 4
Hãy chọn câu trả lời đúng.
2) Một hình trụ có chiều cao gấp đôi đường kính đáy đựng đầy nước, nhúng chìm vào bình một hình cầu khi lấy ra mực nước trong bình còn lại bình. Tỉ số giữa bán kính hình trụ và bán kính hình cầu là A.2 ; B. ; C. ; D. một kết quả khác.
Bìa2: 1) Giải phương trình: 2x4 - 11 x3 + 19x2 - 11 x + 2 = 0
2) Cho x + y = 1 (x > 0; y > 0) Tìm giá trị lớn nhất của A = +
Bài 3: 1) Tìm các số nguyên a, b, c sao cho đa thức : (x + a)(x - 4) - 7
Phân tích thành thừa số được : (x + b).(x + c)
2) Cho tam giác nhọn xây, B, C lần lượt là các điểm cố định trên tia Ax, Ay sao cho AB < AC, điểm M di động trong góc xAy sao cho =
Xác định vị trí điểm M để MB + 2 MC đạt giá trị nhỏ nhất.
Bài 4: Cho đường tròn tâm O đường kính AB và CD vuông góc với nhau, lấy điểm I bất kỳ trên đoan CD.
a) Tìm điểm M trên tia AD, điểm N trên tia AC sao cho I lag trung điểm của MN.
b) Chứng minh tổng MA + NA không đổi.
c) Chứng minh rằng đường tròn ngoại tiếp tam giác AMN đi qua hai điểm cố định.
Hướng dẫn
Bài 1: 1) Chọn C. Trả lời đúng.
2) Chọn D. Kết quả khác: Đáp số là: 1
Bài 2 : 1)A = (n + 1)4 + n4 + 1 = (n2 + 2n + 1)2 - n2 + (n4 + n2 + 1)
= (n2 + 3n + 1)(n2 + n + 1) + (n2 + n + 1)(n2 - n + 1)
= (n2 + n + 1)(2n2 + 2n + 2) = 2(n2 + n + 1)2
Vậy A chia hết cho 1 số chính phương khác 1 với mọi số nguyên dương n.
2) Do A > 0 nên A lớn nhất A2 lớn nhất.
Xét A2 = (+ )2 = x + y + 2 = 1 + 2 (1)
Ta có: (Bất đẳng thức Cô si)
=> 1 > 2 (2)
Từ (1) và (2) suy ra: A2 = 1 + 2 < 1 + 2 = 2
Max A2 = 2 x = y = , max A = x = y =
Bài3 Câu 1Với mọi x ta có (x + a)(x - 4) - 7 = (x + b)(x + c)
Nên với x = 4 thì - 7 = (4 + b)(4 + c)
Có 2 trường hợp: 4 + b = 1 và 4 + b = 7
4 + c = - 7 4 + c = - 1
Trường hợp thứ nhất cho b = - 3, c = - 11, a = - 10
Ta có (x - 10)(x - 4) - 7 = (x - 3)(x - 11)
Trường hợp thứ hai cho b = 3, c = - 5, a = 2
Ta có (x + 2)(x - 4) - 7 = (x + 3)(x - 5)
Câu2 (1,5điểm)
Gọi D là điểm trên cạnh AB sao cho: AD = AB. Ta có D là điểm cố định
Mà = (gt) do đó =
Xét tam giác AMB và tam giác ADM có MâB (chung)
= =
Do đó Δ AMB ~ Δ ADM => = = 2
=> MD = 2MD (0,25 điểm)
Xét ba điểm M, D, C : MD + MC > DC (không đổi)
Do đó MB + 2MC = 2(MD + MC) > 2DC
Dấu "=" xảy ra M thuộc đoạn thẳng DC
Giá trị nhỏ nhất của MB + 2 MC là 2 DC
* Cách dựng điểm M.
- Dựng đường tròn tâm A bán kính AB
- Dựng D trên tia Ax sao cho AD = AB
M là giao điểm của DC và đường tròn (A; AB)
Bài 4: a) Dựng (I, IA) cắt AD tại M cắt tia AC tại N
Do MâN = 900 nên MN là đường kính
Vậy I là trung điểm của MN
b) Kẻ MK // AC ta có : ΔINC = ΔIMK (g.c.g)
=> CN = MK = MD (vì ΔMKD vuông cân)
Vậy AM+AN=AM+CN+CA=AM+MD+CA
=> AM = AN = AD + AC không đổi
c) Ta có IA = IB = IM = IN
Vậy đường tròn ngoại tiếp ΔAMN đi qua hai điểm A, B cố định .
Đề 8
Bài 1. Cho ba số x, y, z thoã mãn đồng thời :
Tính giá trị của biểu thức :.
Bài 2). Cho biểu thức :.
Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó
Bài 3. Giải hệ phương trình :
Bài 4. Cho đường tròn tâm O đường kính AB bán kính R. Tiếp tuyến tại điểm M bbất kỳ trên đường tròn (O) cắt các tiếp tuyến tại A và B lần lượt tại C và D.
a.Chứng minh : AC . BD = R2.
b.Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất .
Bài 5.Cho a, b là các số thực dương. Chứng minh rằng :
Bài 6).Cho tam giác ABC có phân giác AD. Chứng minh : AD2 = AB . AC - BD . DC.
Hướng dẫn giải
Bài 1. Từ giả thiết ta có :
Cộng từng vế các đẳng thức ta có :
Vậy : A = -3.
Bài 2.(1,5 điểm) Ta có :
Do và
Bài 3. Đặt : Ta có : u ; v là nghiệm của phương trình :
;
;
Giải hai hệ trên ta được : Nghiệm của hệ là :
(3 ; 2) ; (-4 ; 2) ; (3 ; -3) ; (-4 ; -3) và các hoán vị.
Bài 4. a.Ta có CA = CM; DB = DM
Các tia OC và OD là phân giác của hai góc AOM và MOB nên OC OD
Tam giác COD vuông đỉnh O, OM là đường cao thuộc cạnh huyền CD nên :
o
h
d
c
m
b
a
MO2 = CM . MD
R2 = AC . BD
b.Các tứ giác ACMO ; BDMO nội tiếp
(0,25đ)
Do đó : (MH1 AB)
Do MH1 OM nên
Chu vi chu vi
Dấu = xảy ra MH1 = OM MO M là điểm chính giữa của cung
Bài 5 (1,5 điểm) Ta có : a , b > 0
a , b > 0
Mặt khác
Nhân từng vế ta có :
Bài 6. (1 điểm) Vẽ đường tròn tâm O ngoại tiếp
d
e
c
b
a
Gọi E là giao điểm của AD và (O)
Ta có: (g.g)
Lại có :
Đè 9
Câu 1: Cho hàm số f(x) =
a) Tính f(-1); f(5)
b) Tìm x để f(x) = 10
c) Rút gọn A = khi x ạ
Câu 2: Giải hệ phương trình
Câu 3: Cho biểu thứcA = với x > 0 và x ạ 1
a) Rút gọn A
b) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đường tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB. Gọi H là chân đường vuông góc hạ từ A đến đường kính BC.
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
b) Giả sử PO = d. Tính AH theo R và d.
Câu 5: Cho phương trình 2x2 + (2m - 1)x + m - 1 = 0
Không giải phương trình, tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn: 3x1 - 4x2 = 11
đáp án
Câu 1a) f(x) =
Suy ra f(-1) = 3; f(5) = 3
b)
c)
Với x > 2 suy ra x - 2 > 0 suy ra
Với x < 2 suy ra x - 2 < 0 suy ra
Câu 2
Câu 3 a) Ta có: A = = = = = = =
b) A = 3 => = 3 => 3x + - 2 = 0 => x = 2/3
Câu 4
O
B
C
H
E
A
P
Do HA // PB (Cùng vuông góc với BC)
nên theo định lý Ta let áp dụng cho CPB ta có
; (1)
Mặt khác, do PO // AC (cùng vuông góc với AB)
=> POB = ACB (hai góc đồng vị)
=> D AHC D POB
Do đó: (2)
Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trung điểm của AH.
b) Xét tam giác vuông BAC, đường cao AH ta có AH2 = BH.CH = (2R - CH).CH
Theo (1) và do AH = 2EH ta có
AH2.4PB2 = (4R.PB - AH.CB).AH.CB
4AH.PB2 = 4R.PB.CB - AH.CB2
AH (4PB2 +CB2) = 4R.PB.CB
Câu 5 Để phương trình có 2 nghiệm phân biệt x1 ; x2 thì D > 0
(2m - 1)2 - 4. 2. (m - 1) > 0
Từ đó suy ra m ạ 1,5 (1)
Mặt khác, theo định lý Viét và giả thiết ta có:
Giải phương trình
ta được m = - 2 và m = 4,125 (2)
Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phương trình đã cho có hai nghiệm phân biệt thỏa mãn: x1 + x2 = 11
Đề 10
Câu 1: Cho P = + -
a/. Rút gọn P.
b/. Chứng minh: P < với x 0 và x 1.
Câu 2: Cho phương trình : x2 – 2(m - 1)x + m2 – 3 = 0 ( 1 ) ; m là tham số.
a/. Tìm m để phương trình (1) có nghiệm.
b/. Tìm m để phương trình (1) có hai nghiệm sao cho nghiệm này bằng ba lần nghiệm kia.
Câu 3: a/. Giải phương trình : + = 2
b/. Cho a, b, c là các số thực thõa mãn :
Tìm giá trị lớn nhất và giá trị bé nhất của Q = 6 a + 7 b + 2006 c.
Câu 4: Cho cân tại A với AB > BC. Điểm D di động trên cạnh AB, ( D không trùng với A, B). Gọi (O) là đường tròn ngoại tiếp . Tiếp tuyến của (O) tại C và D cắt nhau ở K .
a/. Chứng minh tứ giác ADCK nội tiếp.
b/. Tứ giác ABCK là hình gì? Vì sao?
c/. Xác định vị trí điểm D sao cho tứ giác ABCK là hình bình hành.
Đáp án
Câu 1: Điều kiện: x 0 và x 1. (0,25 điểm)
P = + -
= + -
=
= =
b/. Với x 0 và x 1 .Ta có: P < <
3 0 )
x - 2 + 1 > 0
( - 1)2 > 0. ( Đúng vì x 0 và x 1)
Câu 2:a/. Phương trình (1) có nghiệm khi và chỉ khi ’ 0.
(m - 1)2 – m2 – 3 0
4 – 2m 0
m 2.
b/. Với m 2 thì (1) có 2 nghiệm.
Gọi một nghiệm của (1) là a thì nghiệm kia là 3a . Theo Viet ,ta có:
a= 3()2 = m2 – 3
m2 + 6m – 15 = 0
m = –32 ( thõa mãn điều kiện).
Câu 3:
Điều kiện x 0 ; 2 – x2 > 0 x 0 ; < .
Đặt y = > 0
Ta có:
Từ (2) có : x + y = 2xy. Thay vào (1) có : xy = 1 hoặc xy = -
* Nếu xy = 1 thì x+ y = 2. Khi đó x, y là nghiệm của phương trình:
X2 – 2X + 1 = 0 X = 1 x = y = 1.
* Nếu xy = - thì x+ y = -1. Khi đó x, y là nghiệm của phương trình:
X2 + X - = 0 X =
Vì y > 0 nên: y = x =
Vậy phương trình có hai nghiệm: x1 = 1 ; x2 =
Câu 4: c/. Theo câu b, tứ giác ABCK là hình thang.
Do đó, tứ giác ABCK là hình bình hành AB // CK
Mà sđ = sđ =
Nên
Dựng tia Cy sao cho .Khi đó, D là giao điểm của và Cy.
Với giả thiết > thì > > .
D AB .
Vậy điểm D xác định như trên là điểm cần tìm.
Đề 11
Câu 1: a) Xác định x R để biểu thức :A = Là một số tự nhiên
b. Cho biểu thức: P = Biết x.y.z = 4 , tính .
Câu 2:Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2)
Chứng minh 3 điểm A, B ,D thẳng hàng; 3 điểm A, B, C không thẳng hàng.
Tính diện tích tam giác ABC.
Câu3 Giải phương trình:
Câu 4 Cho đường tròn (O;R) và một điểm A sao cho OA = R. Vẽ các tiếp tuyến AB, AC với đường tròn. Một góc éxOy = 450 cắt đoạn thẳng AB và AC lần lượt tại D và E.
Chứng minh rằng:
a.DE là tiếp tuyến của đường tròn ( O ).
b.
đáp án
Câu 1: a.
A =
A là số tự nhiên -2x là số tự nhiên x =
(trong đó k Z và k 0 )
b.Điều kiện xác định: x,y,z 0, kết hpọ với x.y.z = 4 ta được x, y, z > 0 và
Nhân cả tử và mẫu của hạng tử thứ 2 với ; thay 2 ở mẫu của hạng tử thứ 3 bởi ta được:
P = (1đ)
vì P > 0
Câu 2: a.Đường thẳng đi qua 2 điểm A và B có dạng y = ax + b
Điểm A(-2;0) và B(0;4) thuộc đường thẳng AB nên b = 4; a = 2
Vậy đường thẳng AB là y = 2x + 4.
Điểm C(1;1) có toạ độ không thoả mãn y = 2x + 4 nên C không thuộc đường thẳng AB A, B, C không thẳng hàng.
Điểm D(-3;2) có toạ độ thoả mãn y = 2x + 4 nên điểm D thuộc đường thẳng AB A,B,D thẳng hàn
b.Ta có :
AB2 = (-2 – 0)2 + (0 – 4)2 =20
AC2 = (-2 – 1)2 + (0 –1)2 =10
BC2 = (0 – 1)2 + (4 – 1)2 = 10
AB2 = AC2 + BC2 DABC vuông tại C
Vậy SDABC = 1/2AC.BC = ( đơn vị diện tích )
Câu 3: Đkxđ x1, đặt ta có hệ phương trình:
B
M
A
O
C
D
E
Giải hệ phương trình bằng phương pháp thế ta được: v = 2
x = 10.
Câu 4
a.áp dụng định lí Pitago tính được
AB = AC = R ABOC là hình
vuông (0.5đ)
Kẻ bán kính OM sao cho
éBOD = éMOD
éMOE = éEOC (0.5đ)
Chứng minh DBOD = DMOD
éOMD = éOBD = 900
Tương tự: éOME = 900
D, M, E thẳng hàng. Do đó DE là tiếp tuyến của đường tròn (O).
b.Xét DADE có DE < AD +AE mà DE = DB + EC
2ED < AD +AE +DB + EC hay 2DE < AB + AC = 2RDE < R
Ta có DE > AD; DE > AE ; DE = DB + EC
Cộng từng vế ta được: 3DE > 2R DE > R
Vậy R > DE > R
Đề 12
Câu 1: Cho hàm số f(x) =
a) Tính f(-1); f(5)
b) Tìm x để f(x) = 10
c) Rút gọn A = khi x ạ
Câu 2: Giải hệ phương trình
Câu 3: Cho biểu thức
A = với x > 0 và x ạ 1
a) Rút gọn A
2) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đường tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB. Gọi H là chân đường vuông góc hạ từ A đến đường kính BC.
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
b) Giả sử PO = d. Tính AH theo R và d.
Câu 5: Cho phương trình 2x2 + (2m - 1)x + m - 1 = 0
Không giải phương trình, tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn: 3x1 - 4x2 = 11
đáp án
Câu 1
a) f(x) =
Suy ra f(-1) = 3; f(5) = 3
b)
c)
Với x > 2 suy ra x - 2 > 0 suy ra
Với x < 2 suy ra x - 2 < 0 suy ra
Câu 2
Câu 3a) Ta có: A =
=
=
=
= = =
O
B
C
H
E
A
P
b) A = 3 => = 3 => 3x + - 2 = 0 => x = 2/3
Câu 4
Do HA // PB (Cùng vuông góc với BC)
nên theo định lý Ta let áp dụng cho tam giác CPB ta có
; (1)
Mặt khác, do PO // AC (cùng vuông góc với AB)
=> POB = ACB (hai góc đồng vị)
=> D AHC D POB
Do đó: (2)
Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trug điểm của AH.
b) Xét tam giác vuông BAC, đường cao AH ta có AH2 = BH.CH = (2R - CH).CH
Theo (1) và do AH = 2EH ta có
AH2.4PB2 = (4R.PB - AH.CB).AH.CB
4AH.PB2 = 4R.PB.CB - AH.CB2
AH (4PB2 +CB2) = 4R.PB.CB
Câu 5 (1đ)
Để phương trình có 2 nghiệm phân biệt x1 ; x2 thì D > 0
(2m - 1)2 - 4. 2. (m - 1) > 0
Từ đó suy ra m ạ 1,5 (1)
Mặt khác, theo định lý Viét và giả thiết ta có:
Giải phương trình
ta được m = - 2 và m = 4,125 (2)
Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phương trình đã cho có hai nghiệm phân biệt t
Đề 13
Câu I : Tính giá trị của biểu thức:
A = + ++ .....+
B = 35 + 335 + 3335 + ..... +
Câu II :Phân tích thành nhân tử :
X2 -7X -18
(x+1) (x+2)(x+3)(x+4)
1+ a5 + a10
Câu III :
Chứng minh : (ab+cd)2 (a2+c2)( b2 +d2)
áp dụng : cho x+4y = 5 . Tìm GTNN của biểu thức : M= 4x2 + 4y2
Câu 4 : Cho tam giác ABC nội tiếp đường tròn (O), I là trung điểm của BC, M là một điểm trên đoạn CI ( M khác C và I ). Đường thẳng AM cắt (O) tại D, tiếp tuyến của đường tròn ngoại tiếp tam giác AIM tại M cắt BD và DC tại P và Q.
Chứng minh DM.AI= MP.IB
Tính tỉ số :
Câu 5:
Cho P =
Tìm điều kiện để biểu thức có nghĩa, rút gọn biểu thức.
đáp án
Câu 1 :
1) A = + ++ .....+
= (+ + + .....+ ) = ()
2) B = 35 + 335 + 3335 + ..... + =
=33 +2 +333+2 +3333+2+.......+ 333....33+2
= 2.99 + ( 33+333+3333+...+333...33)
= 198 + ( 99+999+9999+.....+999...99)
198 + ( 102 -1 +103 - 1+104 - 1+ ....+10100 – 1) = 198 – 33 +
B = +165
Câu 2: 1)x2 -7x -18 = x2 -4 – 7x-14 = (x-2)(x+2) - 7(x+2) = (x+2)(x-9) (1đ)
2)(x+1)(x+2)(x+3)(x+4) -3= (x+1)(x+4)(x+2)(x+3)-3
= (x2+5x +4)(x2 + 5x+6)-3= [x2+5x +4][(x2 + 5x+4)+2]-3
= (x2+5x +4)2 + 2(x2+5x +4)-3=(x2+5x +4)2 - 1+ 2(x2+5x +4)-2
= [(x2+5x +4)-1][(x2+5x +4)+1] +2[(x2+5x +4)-1]
= (x2+5x +3)(x2+5x +7)
3) a10+a5+1
= a10+a9+a8+a7+a6 + a5 +a5+a4+a3+a2+a +1
- (a9+a8+a7 )- (a6 + a5 +a4)- ( a3+a2+a )
= a8(a2 +a+1) +a5(a2 +a+1)+ a3(a2 +a+1)+ (a2 +a+1)-a7(a2 +a+1)
-a4(a2 +a+1)-a(a2 +a+1)
=(a2 +a+1)( a8-a7+ a5 -a4+a3 - a +1)
Câu 3: 4đ
1) Ta có : (ab+cd)2 (a2+c2)( b2 +d2)
a2b2+2abcd+c2d2 a2b2+ a2d2 +c2b2 +c2d2
0 a2d2 - 2cbcd+c2b2
0 (ad - bc)2 (đpcm )
Dấu = xãy ra khi ad=bc.
2) áp dụng hằng đẳng thức trên ta có :
52 = (x+4y)2 = (x. + 4y) (x2 + y2)=>
x2 + y2 => 4x2 + 4y2 dấu = xãy ra khi x= , y = (2đ)
Câu 4 : 5đ
Ta có : góc DMP= góc AMQ = góc AIC. Mặt khác góc ADB = góc BCA=>
MPD đồng dạng với ICA => => DM.IA=MP.CI hay DM.IA=MP.IB (1).
Ta có góc ADC = góc CBA,
Góc DMQ = 1800 - AMQ=1800 - góc AIM = góc BIA.
Do đó DMQ đồng dạng với BIA =>
=> DM.IA=MQ.IB (2)
Từ (1) và (2) ta suy ra = 1
Câu 5
Để P xác định thì : x2-4x+3 0 và 1-x >0
Từ 1-x > 0 => x < 1
Mặt khác : x2-4x+3 = (x-1)(x-3), Vì x < 1 nên ta có :
(x-1) 0
Vậy với x < 1 thì biểu thức có nghĩa.
Với x < 1 Ta có :
P = =
Đề 14
Câu 1 : a. Rút gọn biểu thức . Với a > 0.
b. Tính giá trị của tổng.
Câu 2 : Cho pt
a. Chứng minh rằng pt luôn luôn có nghiệm với .
b. Gọi là hai nghiệm của pt. Tìm GTLN, GTNN của bt.
Câu 3 : Cho Chứng minh.
Câu 4 Cho đường tròn tâm o và dây AB. M là điểm chuyển động trên đường tròn, từM kẻ MH ^ AB (H ẻ AB). Gọi E và F lần lượt là hình chiếu vuông góc của H trên MA và MB. Qua M kẻ đường thẳng vuông góc với è cắt dây AB tại D.
1. Chứng minh rằng đường thẳng MD luôn đi qua 1 điểm cố định khi M thay đổi trên đường tròn.
2. Chứng minh.
Hướng dẫn
Câu 1 a. Bình phương 2 vế (Vì a > 0).
áp dụng câu a.
Câu 2 a. : cm
B (2 đ) áp dụng hệ thức Viet ta có:
(1) Tìm đk đẻ pt (1) có nghiệm theo ẩn.
Câu 3 : Chuyển vế quy đồng ta được.
bđt
đúng vì
M
o
E'
E
A
F
F'
B
I
D
H
Câu 4: a
- Kẻ thêm đường phụ.
- Chứng minh MD là đường kính của (o)
=> ........
b.
Gọi E', F' lần lượt là hình chiếu của D trên MA và MB.
Đặt HE = H1
HF = H2
∞
Thay vào (1) ta có:
Đề 15
Câu 1: Cho biểu thức D = :
a) Tìm điều kiện xác định của D và rút gọn D
b) Tính giá trị của D với a =
c) Tìm giá trị lớn nhất của D
Câu 2: Cho phương trình x2- mx + m2 + 4m - 1 = 0 (1)
a) Giải phương trình (1) với m = -1
b) Tìm m để phương trình (1) có 2 nghiệm thoã mãn
Câu 3: Cho tam giác ABC đường phân giác AI, biết AB = c, AC = b, Chứng minh rằng AI = (Cho Sin2)
Câu 4: Cho đường tròn (O) đường kính AB và một điểm N di động trên một nửa đường tròn sao cho Vễ vào trong đường tròn hình vuông ANMP.
a) Chứng minh rằng đường thẳng NP luôn đi qua điểm cố định Q.
b) Gọi I là tâm đường tròn nội tiếp tam giác NAB. Chứng minh tứ giác ABMI nội tiếp.
c) Chứng minh đường thẳng MP luôn đi qua một điểm cố định.
Câu 5: Cho x,y,z; xy + yz + zx = 0 và x + y + z = -1
Hãy tính giá trị của:
B =
Đáp án
Câu 1: a) - Điều kiện xác định của D là
- Rút gọn D
D = :
D =
b) a =
Vậy D =
c) áp dụng bất đẳng thức cauchy ta có
Vậy giá trị của D là 1
Câu 2: a) m = -1 phương trình (1)
b) Để phương trình 1 có 2 nghiệm thì (*)
+ Để phương trình có nghiệm khác 0 (*)
+
Kết hợp với điều kiện (*)và (**) ta được m = 0 và
Câu 3:
+
+
+
Câu 4: a) Gọi Q = NP
Suy ra Q cố định
b)
Tứ giác ABMI nội tiếp
c) Trên tia đối của QB lấy điểm F sao cho QF = QB, F cố định.
Tam giác ABF có: AQ = QB = QF
ABF vuông tại A
Lại có Tứ giác APQF nội tiếp
Ta có:
M1,P,F Thẳng hàng
Câu 5: Biến đổi B = xyz =
Đề 16
Bài 1: Cho biểu thức A =
a) Tìm điều kiện của x để A xác định
b) Rút gọn A
Bài 2 : Trên cùng một mặt phẳng tọa độ cho hai điểm A(5; 2) và B(3; -4)
a) Viết phương tình đường thẳng AB
b) Xác định điểm M trên trục hoành để tam giác MAB cân tại M
Bài 3 : Tìm tất cả các số tự nhiên m để phương trình ẩn x sau:
x2 - m2x + m + 1 = 0
có nghiệm nguyên.
Bài 4 : Cho tam giác ABC. Phân giác AD (D ẻ BC) vẽ đường tròn tâm O qua A và D đồng thời tiếp xúc với BC tại D. Đường tròn này cắt AB và AC lần lượt tại E và F. Chứng minh
a) EF // BC
b) Các tam giác AED và ADC; àD và ABD là các tam giác đồng dạng.
c) AE.AC = à.AB = AC2
Bài 5 : Cho các số dương x, y thỏa mãn điều kiện x2 + y2 ³ x3 + y4. Chứng minh:
x3 + y3 Ê x2 + y2 Ê x + y Ê 2
Đáp án
Bài 1:
a) Điều kiện x thỏa mãn
Û Û x > 1 và x ạ 2
KL: A xác định khi 1 2
b) Rút gọn A
A =
A =
Với 1 < x < 2 A =
Với x > 2 A =
Kết luận
Với 1 < x < 2 thì A =
Với x > 2 thì A =
Bài 2:
a) A và B có hoành độ và tung độ đều khác nhau nên phương trình đường thẳng AB có dạng y = ax + b
A(5; 2) ẻ AB ị 5a + b = 2
B(3; -4) ẻ AB ị 3a + b = -4
Giải hệ ta có a = 3; b = -13
Vậy phương trình đường thẳng AB là y = 3x - 13
b) Giả sử M (x, 0) ẻ xx’ ta có
MA =
MB =
DMAB cân ị MA = MB Û
Û (x - 5)2 + 4 = (x - 3)2 + 16
Û x = 1
Kết luận: Điểm cần tìm: M(1; 0)
Bài 3:
Phương trình có nghiệm nguyên khi D = m4 - 4m - 4 là số chính phương
Ta lại có: m = 0; 1 thì D < 0 loại
m = 2 thì D = 4 = 22 nhận
m ³ 3 thì 2m(m - 2) > 5 Û 2m2 - 4m - 5 > 0
Û D - (2m2 - 2m - 5) < D < D + 4m + 4
Û m4 - 2m + 1 < D < m4
Û (m2 - 1)2 < D < (m2)2
D không chính phương
Vậy m = 2 là giá trị cần tìm.
Bài 4:
a) (0,25)
(0,25)
mà (0,25)
ị EF // BC (2 góc so le trong bằng nhau)
b) AD là phân giác góc BAC nên
sđsđ() = sđ = sđ
do đó và
ị DDAE ~ DADC (g.g)
Tương tự: sđ = ị
do đó DAFD ~ đAB (g.g
c) Theo trên:
+ DAED ~ DADB
ị hay AD2 = AE.AC (1)
+ DADF ~ DABD ị
ị AD2 = AB.AF (2)
Từ (1) và (2) ta có AD2 = AE.AC = AB.AF
Bài 5 (1đ):
Ta có (y2 - y) + 2 ³ 0 ị 2y3 Ê y4 + y2
ị (x3 + y2) + (x2 + y3) Ê (x2 + y2) + (y4 + x3)
mà x3 + y4 Ê x2 + y3 do đó
x3 + y3 Ê x2 + y2 (1)
+ Ta có: x(x - 1)2 ³ 0: y(y + 1)(y - 1)2 ³ 0
ị x(x - 1)2 + y(y + 1)(y - 1)2 ³ 0
ị x3 - 2x2 + x + y4 - y3 - y2 + y ³ 0
ị (x2 + y2) + (x2 + y3) Ê (x + y) + (x3 + y4)
mà x2 + y3 ³ x3 + y4
ị x2 + y2 Ê x + y (2)
và (x + 1)(x - 1) ³ 0. (y - 1)(y3 -1) ³ 0
x3 - x2 - x + 1 + y4 - y - y3 + 1 ³ 0
ị (x + y) + (x2 + y3) Ê 2 + (x3 + y4)
mà x2 + y3 ³ x3 + y4
ị x + y Ê 2
Từ (1) (2) và (3) ta có:
x3 + y3 Ê x2 + y2 Ê x + y Ê 2
Đề 14
Câu 1: x- 4(x-1) + x + 4(x-1) 1
cho A= ( 1 - )
x2- 4(x-1) x-1
a/ rút gọn biểu thức A.
b/ Tìm giá trị nguyên của x để A có giá trị nguyên.
Câu 2: Xác định các giá trị của tham số m để phương trình
x2-(m+5)x-m+6 =0
Có 2 nghiệm x1 và x2 thoã mãn một trong 2 điều kiện sau:
a/ Nghiệm này lớn hơn nghiệm kia một đơn vị.
b/ 2x1+3x2=13
Câu 3Tìm giá trị của m để hệ phương trình
mx-y=1
m3x+(m2-1)y =2
vô nghiệm, vô số nghiệm.
Câu 4: tìm max và min của biểu thức: x2+3x+1
x2+1
Câu 5: Từ một đỉnh A của hình vuông ABCD kẻ hai tia tạo với nhau một góc 450. Một tia cắt cạnh BC tại E cắt đường chéo BD tại P. Tia kia cắt cạnh CD tại F và cắt đường chéo BD tại Q.
a/ Chứng minh rằng 5 điểm E, P, Q, F và C cùng nằm trên một đường tròn.
b/ Chứng minh rằng: SAEF=2SAQP
c/ Kẻ trung trực của cạnh CD cắt AE tại M tính số đo góc MAB biết CPD=CM
hướng dẫn
Câu 1: a/ Biểu thức A xác định khi x≠2 và x>1
( x-1 -1)2+ ( x-1 +1)2 x-2
A= . ( )
(x-2)2 x-1
x- 1 -1 + x-1 + 1 x- 2 2 x- 1 2
= . = =
x-2 x-1 x-1 x-1
b/ Để A nguyên thì x- 1 là ước dương của 1 và 2
* x- 1 =1 thì x=0 loại
* x- 1 =2 thì x=5
vậy với x = 5 thì A nhận giá trị nguyên bằng 1
Câu 2: Ta có ∆x = (m+5)2-4(-m+6) = m2+14m+1≥0 để phương trìnhcó hai nghiệmphân biệt khi vàchỉ khi m≤-7-4 3 và m≥-7+4 3 (*)
a/ Giả sử x2>x1 ta có hệ x2-x1=1 (1)
x1+x2=m+5 (2)
x1x2 =-m+6 (3)
Giải hệ tađược m=0 và m=-14 thoã mãn (*)
b/ Theo giả thiết ta có: 2x1+3x2 =13(1’)
x1+x2 = m+5(2’)
x1x2 =-m+6 (3’)
giải hệ ta được m=0 và m= 1 Thoả mãn (*)
Câu 3: *Để hệ vô nghiệm thì m/m3=-1/(m2-1) ≠1/2
3m3-m=-m3 m2(4m2- 1)=0 m=0 m=0
3m2-1≠-2 3m2≠-1 m=±1/2 m=±1/2
∀m
*Hệvô số nghiệm thì: m/m3=-1/(m2-1) =1/2
3m3-m=-m3 m=0
3m2-1= -2 m=±1/2
Vô nghiệm
Không có giá trị nào của m để hệ vô số nghiệm.
Câu 4: Hàm số xác định với ∀x(vì x2+1≠0) x2+3x+1
gọi y0 là 1 giá trịcủa hàmphương trình: y0=
x2+1
(y0-1)x2-6x+y0-1 =0 có nghiệm
*y0=1 suy ra x = 0 y0 ≠ 1; ∆’=9-(y0-1)2≥0 (y0-1)2≤ 9 suy ra -2 ≤ y0 ≤ 4
Vậy: ymin=-2 và y max=4
Câu 5: ( Học sinh tự vẽ hình)
Giải
a/ A1 và B1 cùng nhìn đoạn QE dưới một góc 450
ị tứ giác ABEQ nội tiếp được.
ị FQE = ABE =1v.
chứng minh tương tự ta có FBE = 1v
ị Q, P, C cùng nằm trên đường tròn đường kinh EF.
b/ Từ câu a suy ra ∆AQE vuông cân.
ị = (1)
tương tự ∆ APF cũng vuông cân
ị = (2)
từ (1) và (2) ị AQP ~ AEF (c.g.c)
= ( )2 hay SAEF = 2SAQP
c/ Để thấy CPMD nội tiếp, MC=MD và APD=CPD
ịMCD= MPD=APD=CPD=CMD
ịMD=CD ị ∆MCD đều ị MPD=600
mà MPD là góc ngoài của ∆ABM ta có APB=450 vậy MAB=600-450=150
Đề 17
Bài 1: Cho biểu thức M =
Tìm điều kiện của x để M có nghĩa và rút gọn M
Tìm x để M = 5
Tìm x Z để M Z.
bài 2: a) Tìm x, y nguyên dơng thoã mãn phơng trình
3x2 +10 xy + 8y2 =96
b)tìm x, y biết / x - 2005/ + /x - 2006/ +/y - 2007/+/x- 2008/ = 3
Bài 3: a. Cho các số x, y, z dơng thoã mãn + + = 4
Chứng ming rằng: + +
b. Tìm giá trị nhỏ nhất của biểu thức: B = (với x )
Bài 4: Cho hình vuông ABCD. Kẻ tia Ax, Ay sao cho = 45
Tia Ax cắt CB và BD lần lợt tại E và P, tia Ay cắt CD và BD lần lợt tại F và Q
Chứng minh 5 điểm E; P; Q; F; C cùng nằm trên một đờng tròn
S= 2 S
Kẻ đờng trung trực của CD cắt AE tại M. Tính số đo góc MAB biết =
Bài 5: (1đ)
Cho ba số a, b , c khác 0 thoã mãn: ; Hãy tính P =
đáp án
Bài 1:M =
a.ĐK 0,5đ
Rút gọn M =
Biến đổi ta có kết quả: M = M =
c. M =
Do M nên là ớc của 4 nhận các giá trị: -4; -2; -1; 1; 2; 4
do
Bài 2 a. 3x2 + 10xy + 8y2 = 96
3x2 + 4xy + 6xy + 8y2 = 96
(3x2 + 6xy) + (4xy + 8y2) = 96
3x(x + 2y) + 4y(x +2y) = 96
(x + 2y)(3x + 4y) = 96
Do x, y nguyên dơng nên x + 2y; 3x + 4y nguyen dơng và 3x + 4y > x + 2y
mà 96 = 25. 3 có các ớc là: 1; 2; 3; 4; 6; 8; 12; 24; 32; 48; 96 đợc biểu diễn thành tích 2 thừa số không nhỏ hơn 3 là: 96 = 3.32 = 4.24 = 6. 16 = 8. 12
Lại có x + 2y và 3x + 4y có tích là 96 (Là số chẵn) có tổng 4x + 6y là số chẳn do đó
Hệ PT này vô nghiệm
Hoặc
Hoặc Hệ PT vô nghiệm
Vậy cấp số x, y nguyên dơng cần tìm là (x, y) = (4, 1)
b. ta có /A/ = /-A/
Nên /x - 2005/ + / x - 2006/ = / x - 2005/ + / 2008 - x/ (1)
mà /x - 2005/ + / x - 2006/ + / y - 2007/ + / x - 2008/ = 3 (2)
Kết hợp (1 và (2) ta có / x - 2006/ + / y - 2007/ (3)
(3) sảy ra khi và chỉ khi
Bài 3
Trớc hết ta chứng minh bất đẳng thức phụ
Với mọi a, b thuộc R: x, y > 0 ta có
(a2y + b2x)(x + y)
a2y2 + a2xy + b2 x2 + b2xy a2xy + 2abxy + b2xy
a2y2 + b2x2 2abxy
a2y2 – 2abxy + b2x2 0
(ay - bx)2 0 (**) bất đẳng thức (**) đúng với mọi a, b, và x,y > 0
Dấu (=) xảy ra khi ay = bx hay
áp dung bất đẳng thức (*) hai lần ta có
Tơng tự
Cộng từng vế các bất đẳng thức trên ta có:
Vì
Ta có:
Vì (x - 2006)2 0 với mọi x
x2 > 0 với mọi x khác 0
Bài 4a. nội tiếp; = 900 à góc AQE = 900 à gócEQF = 900
Tơng tự góc FDP = góc FAP = 450
à Tứ giác FDAP nội tiếp góc D = 900 à góc APF = 900 à góc EPF = 900 ……. 0,25đ
Các điểm Q, P,C luôn nhìn dới 1góc900 nên 5 điểm E, P, Q, F, C cùng nằm trên 1 đờng tròn đờng kính EF …………………0,25đ
b. Ta có góc APQ + góc QPE = 1800 (2 góc kề bù) góc APQ = góc AFE
Góc AFE + góc EPQ = 1800
àTam giác APQ đồng dạng với tam giác AEF (g.g)
à
góc CPD = góc CMD à tứ giác MPCD nội tiếp à góc MCD = góc CPD (cùng chắn cung MD)
Lại có góc MPD = góc CPD (do BD là trung trực của AC)
góc MCD = góc MDC (do M thuộc trung trực của DC)
à góc CPD = gócMDC = góc CMD = gócMCD à tam giác MDC đều à góc CMD = 600
à tam giác DMA cân tại D (vì AD = DC = DM)
Và góc ADM =gócADC – gócMDC = 900 – 600 = 300
à góc MAD = góc AMD (1800 - 300) : 2 = 750
à gócMAB = 900 – 750 = 150
Bài 5Đặt x = 1/a; y =1/b; z = 1/c à x + y + z = 0 (vì 1/a = 1/b + 1/c = 0)
à x = -(y + z)
à x3 + y3 + z3 – 3 xyz = -(y + z)3 + y3 – 3xyz
à-( y3 + 3y2 z +3 y2z2 + z3) + y3 + z3 – 3xyz = - 3yz(y + z + x) = - 3yz .0 = 0
Từ x3 + y3 + z3 – 3xyz = 0 à x3 + y3 + z3 = 3xyz
à 1/ a3 + 1/ b3 + 1/ c3 3 1/ a3 .1/ b3 .1/ c3 = 3/abc
Do đó P = ab/c2 + bc/a2 + ac/b2 = abc (1/a3 + 1/b3+ 1/c3) = abc.3/abc = 3
nếu 1/a + 1/b + 1/c =o thì P = ab/c2 + bc/a2 + ac/b2 = 3
Đề 19
Bài 1Cho biểu thức A = +
a. Rút gọn biểu thức A
b. Tìm những giá trị nguyên của x sao cho biểu thức A cũng có giá trị nguyên.
Bài 2: (2 điểm)
Cho các đường thẳng:
y = x-2 (d1)
y = 2x – 4 (d2)
y = mx + (m+2) (d3)
a. Tìm điểm cố định mà đường thẳng (d3 ) luôn đi qua với mọi giá trị của m.
b. Tìm m để ba đường thẳng (d1); (d2); (d3) đồng quy .
Bài 3: Cho phương trình x2 - 2(m-1)x + m - 3 = 0 (1)
a. Chứng minh phương trình luôn có 2 nghiệm phân biệt.
b. Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình (1) mà không phụ thuộc vào m.
c. Tìm giá trị nhỏ nhất của P = x21 + x22 (với x1, x2 là nghiệm của phương trình (1))
Bài 4: Cho đường tròn (o) với dây BC cố định và một điểm A thay đổi vị trí trên cung lớn BC sao cho AC>AB và AC > BC . Gọi D là điểm chính giữa của cung nhỏ BC. Các tiếp tuyến của (O) tại D và C cắt nhau tại E. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng AB với CD; AD và CE.
a. Chứng minh rằng DE// BC
b. Chứng minh tứ giác PACQ nội tiếp
c. Gọi giao điểm của các dây AD và BC là F
Chứng minh hệ thức: = +
Bài 5: Cho các số dương a, b, c Chứng minh rằng:
đáp án
Bài 1: - Điều kiện : x 0
a. Rút gọn:
- Với x <0:
- Với 0<x 2:
- Với x>2 :
b. Tìm x nguyên để A nguyên:
A nguyên x2 + 3
3 => x =
Bài 2:
a. (d1) : y = mx + (m +2)
m (x+1)+ (2-y) = 0
Để hàm số luôn qua điểm cố định với mọi m
=.>
Vậy N(-1; 2) là điểm cố định mà (d3) đi qua
b. Gọi M là giao điểm (d1) và (d2) . Tọa độ M là nghiệm của hệ
=>
Vậy M (2; 0) .
Nếu (d3) đi qua M(2,0) thì M(2,0) là nghiệm (d3)
Ta có : 0 = 2m + (m+2) => m= -
Vậy m = - thì (d1); (d2); (d3) đồng quy
Bài 3: a. = m2 –3m + 4 = (m - )2 + >0 m.
Vậy phương trình có 2 nghiệm phân biệt
b. Theo Viét: =>
x1+ x2 – 2x1x2 – 4 = 0 không phụ thuộc vào m
P = x12 + x12 = (x1 + x2)2 - 2x1x2 = 4(m - 1)2 – 2 (m-3)
= (2m - )2 +
VậyPmin = với m =
Bài 4: Vẽ hình đúng – viết giả thiết – kết luận
a. SđCDE = Sđ DC = Sđ BD =
=> DE// BC (2 góc vị trí so le)
b. APC = sđ (AC - DC) = AQC
=> APQC nội tiếp (vì APC = AQC
cùng nhìn đoan AC)
c.Tứ giác APQC nội tiếp
CPQ = CAQ (cùng chắn cung CQ)
CAQ = CDE (cùng chắn cung DC)
Suy ra CPQ = CDE => DE// PQ
Ta có: = (vì DE//PQ) (1)
= (vì DE// BC) (2)
Cộng (1) và (2) :
=> (3)
ED = EC (t/c tiếp tuyến) từ (1) suy ra PQ = CQ
Thay vào (3) :
Bài 5:Ta có: < < (1)
< < (2)
< < (3)
Cộng từng vế (1),(2),(3) :
1 < + + < 2
Đề 20
Bài 1: (2đ)
Cho biểu thức:
P =
a) Rút gọn P.
b) Tìm giá trị nhỏ nhất của P.
Bài 2: (2đ) Một người đự định đi xe đạp từ A đến B cách nhau 20 km trong một thời gian đã định. Sau khi đi được 1 giờ với vận tốc dự định, do đường khó đi nên người đó giảm vận tốc đi 2km/h trên quãng đường còn lại, vì thế người đó đến B chậm hơn dự định 15 phút. Tính vận tốc dự định của người đi xe đạp.
Bài 3: (1,5đ) Cho hệ phương trình:
Giải hệ phương trình với m = 3
Tìm m để hệ có nghiệm duy nhất thoả mãn x + y = 1
Bài 4: (3đ) Cho nửa đường tròn (O; R) đường kính AB. Điểm M tuỳ ý trên nửa đường tròn. Gọi N và P lần lượt là điểm chính giữa của cung AM và cung MB. AP cắt BN tại I.
a) Tính số đo góc NIP.
b) Gọi giao điểm của tia AN và tia BP là C; tia CI và AB là D.
Chứng minh tứ giác DOPN nội tiếp được.
c) Tìm quỹ tích trung điểm J của đoạn OC khi M di động trên nửa tròn tròn tâm O
Bài 5: (1,5đ) Cho hàm số y = -2x2 (P) và đường thẳng y = 3x + 2m – 5 (d)
Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B. Tìm toạ độ hai điểm đó.
Tìm quỹ tích chung điểm I của AB khi m thay đổi.
---------------------------------------------------
(Học sinh không được sử dụng bất cứ tài liệu nào)
Đáp án
Môn: Toán 9
Bài 1: (2đ)
a) (1,5đ)
- Thực hiện được biểu thức trong ngoặc bằng: 0,75đ
- Thực hiện phép chia đúng bằng 0,25đ
- Thực hiện phép cộng đúng bằng: 0,25đ
- Điều kiện đúng: x ³ 0; x ạ 1 0,25đ
b) (0,5đ)
- Viết P = lập luận tìm được GTNN của P = -1/4 khi x = 0 0,5đ
Bài 2: (2đ)
1) Lập phương trình đúng (1,25đ)
- Gọi ẩn, đơn vị, đk đúng 0,25đ
- Thời gian dự định 0,25đ
- Thời gian thực tế 0,5đ
- Lập luận viết được PT đúng 0,25đ
2) Gải phương trình đúng 0,5đ
3) đối chiếu kết quả và trả lời đúng 0,25đ
Bài 3: (1,5đ) a) Thay m = 3 và giải hệ đúng: 1đ
b) (0,5đ)
Tìm m để hệ có nghiệm duy nhất đúng 0,25đ
Tìm m để hệ có nghiệm thoả mãn x + y = 1 và KL 0,25đ
Bài 4: (3đ) Vẽ hình đúng 0,25đ
a) Tính được số đo góc NIP = 1350 0,75đ
b) (1đ)
Vẽ hình và C/m được góc NDP = 900 0,5đ
Chứng minh được tứ giác DOPN nội tiếp được. 0,5đ
(1đ) + C/m phần thuận
Kẻ JE//AC, JF//BC và C/m được góc EJF = 450 0,25đ
Lập luận và kết luận điểm J: 0,25đ
+ C/m phần đảo 0,25đ
+ Kết luận quỹ tích 0,25đ
Bài 5: (1,5đ) a) (1đ)
Tìm được điều kiện của m để (d) cắt (P) tại hai điểm phân biệt: 0,5đ
Tìm được toạ độ 2 điểm A, B 0,5đ
b) Tìm được quỹ tích trung điểm I: và kết luận 0,5đ
Lưu ý: hai lần thiều giải thích hoặc đơn vị trừ 0,25đ
Ii, 100 đề tự ôn
MÔT Số Đề THI VàO THPT PHÂN BAN
I, Phần 1 : Các đề thi vào ban cơ bản
Đề số 1
Câu 1 ( 3 điểm )
Cho biểu thức :
Tìm điều kiện của x để biểu thức A có nghĩa .
Rút gọn biểu thức A .
Giải phơng trình theo x khi A = -2 .
Câu 2 ( 1 điểm )
Giải phơng trình :
Câu 3 ( 3 điểm )
Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đờng thẳng (D) : y = - 2(x +1) .
Điểm A có thuộc (D) hay không ?
Tìm a trong hàm số y = ax2 có đồ thị (P) đi qua A .
Viết phơng trình đờng thẳng đi qua A và vuông góc với (D) .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD cố định , có độ dài cạnh là a .E là điểm đi chuyển trên đoạn CD ( E khác D ) , đờng thẳng AE cắt đờng thẳng BC tại F , đờng thẳng vuông góc với AE tại A cắt đờng thẳng CD tại K .
Chứng minh tam giác ABF = tam giác ADK từ đó suy ra tam giác AFK vuông cân .
Gọi I là trung điểm của FK , Chứng minh I là tâm đờng tròn đi qua A , C, F , K .
Tính số đo góc AIF , suy ra 4 điểm A , B , F , I cùng nằm trên một đờng tròn .
Đề số 2
Câu 1 ( 2 điểm )
Cho hàm số : y =
Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số.
Lập phơng trình đờng thẳng đi qua điểm ( 2 , -6 ) có hệ số góc a và tiếp xúc với đồ thị hàm số trên .
Câu 2 ( 3 điểm )
Cho phơng trình : x2 – mx + m – 1 = 0 .
Gọi hai nghiệm của phơng trình là x1 , x2 . Tính giá trị của biểu thức .
. Từ đó tìm m để M > 0 .
Tìm giá trị của m để biểu thức P = đạt giá trị nhỏ nhất .
Câu 3 ( 2 điểm )
Giải phơng trình :
Câu 4 ( 3 điểm )
Cho hai đờng tròn (O1) và (O2) có bán kính bằng R cắt nhau tại A và B , qua A vẽ cát tuyến cắt hai đờng tròn (O1) và (O2) thứ tự tại E và F , đờng thẳng EC , DF cắt nhau tại P .
Chứng minh rằng : BE = BF .
Một cát tuyến qua A và vuông góc với AB cắt (O1) và (O2) lần lợt tại C,D . Chứng minh tứ giác BEPF , BCPD nội tiếp và BP vuông góc với EF .
Tính diện tích phần giao nhau của hai đờng tròn khi AB = R .
Đề số 3
Câu 1 ( 3 điểm )
Giải bất phơng trình :
Tìm giá trị nguyên lớn nhất của x thoả mãn .
Câu 2 ( 2 điểm )
Cho phơng trình : 2x2 – ( m+ 1 )x +m – 1 = 0
Giải phơng trình khi m = 1 .
Tìm các giá trị của m để hiệu hai nghiệm bằng tích của chúng .
Câu3 ( 2 điểm )
Cho hàm số : y = ( 2m + 1 )x – m + 3 (1)
Tìm m biết đồ thị hàm số (1) đi qua điểm A ( -2 ; 3 ) .
Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m .
Câu 4 ( 3 điểm )
Cho góc vuông xOy , trên Ox , Oy lần lợt lấy hai điểm A và B sao cho OA = OB . M là một điểm bất kỳ trên AB .
Dựng đờng tròn tâm O1 đi qua M và tiếp xúc với Ox tại A , đờng tròn tâm O2 đi qua M và tiếp xúc với Oy tại B , (O1) cắt (O2) tại điểm thứ hai N .
Chứng minh tứ giác OANB là tứ giác nội tiếp và ON là phân giác của góc ANB .
Chứng minh M nằm trên một cung tròn cố định khi M thay đổi .
Xác định vị trí của M để khoảng cách O1O2 là ngắn nhất .
Đề số 4 .
Câu 1 ( 3 điểm )
Cho biểu thức :
Rút gọn biểu thức .
Tính giá trị của khi
Câu 2 ( 2 điểm )
Giải phơng trình :
Câu 3 ( 2 điểm )
Cho hàm số : y = -
Tìm x biết f(x) = - 8 ; - ; 0 ; 2 .
Viết phơng trình đờng thẳng đi qua hai điểm A và B nằm trên đồ thị có hoành độ lần lợt là -2 và 1 .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD , trên cạnh BC lấy 1 điểm M . Đờng tròn đờng kính AM cắt đờng tròn đờng kính BC tại N và cắt cạnh AD tại E .
Chứng minh E, N , C thẳng hàng .
Gọi F là giao điểm của BN và DC . Chứng minh
Chứng minh rằng MF vuông góc với AC .
Đề số 5
Câu 1 ( 3 điểm )
Cho hệ phơng trình :
Giải hệ phơng trình khi m = 1 .
Giải và biện luận hệ phơng trình theo tham số m .
Tìm m để x – y = 2 .
Câu 2 ( 3 điểm )
Giải hệ phơng trình :
Cho phơng trình bậc hai : ax2 + bx + c = 0 . Gọi hai nghiệm của phơng trình là x1 , x2 . Lập phơng trình bậc hai có hai nghiệm là 2x1+ 3x2 và 3x1 + 2x2 .
Câu 3 ( 2 điểm )
Cho tam giác cân ABC ( AB = AC ) nội tiếp đờng tròn tâm O . M là một điểm chuyển động trên đờng tròn . Từ B hạ đờng thẳng vuông góc với AM cắt CM ở D .
Chứng minh tam giác BMD cân
Câu 4 ( 2 điểm )
Tính :
Giải bất phơng trình :
( x –1 ) ( 2x + 3 ) > 2x( x + 3 ) .
Đề số 6
Câu 1 ( 2 điểm )
Giải hệ phơng trình :
Câu 2 ( 3 điểm )
Cho biểu thức :
Rút gọn biểu thức A .
Coi A là hàm số của biến x vẽ đồ thi hàm số A .
Câu 3 ( 2 điểm )
Tìm điều kiện của tham số m để hai phơng trình sau có nghiệm chung .
x2 + (3m + 2 )x – 4 = 0 và x2 + (2m + 3 )x +2 =0 .
Câu 4 ( 3 điểm )
Cho đờng tròn tâm O và đờng thẳng d cắt (O) tại hai điểm A,B . Từ một điểm M trên d vẽ hai tiếp tuyến ME , MF ( E , F là tiếp điểm ) .
Chứng minh góc EMO = góc OFE và đờng tròn đi qua 3 điểm M, E, F đi qua 2 điểm cố định khi m thay đổi trên d .
Xác định vị trí của M trên d để tứ giác OEMF là hình vuông .
Đề số 7
Câu 1 ( 2 điểm )
Cho phơng trình (m2 + m + 1 )x2 - ( m2 + 8m + 3 )x – 1 = 0
Chứng minh x1x2 < 0 .
Gọi hai nghiệm của phơng trình là x1, x2 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức :
S = x1 + x2 .
Câu 2 ( 2 điểm )
Cho phơng trình : 3x2 + 7x + 4 = 0 . Gọi hai nghiệm của phơng trình là x1 , x2 không giải phơng trình lập phơng trình bậc hai mà có hai nghiệm là : và .
Câu 3 ( 3 điểm )
Cho x2 + y2 = 4 . Tìm giá trị lớn nhất , nhỏ nhất của x + y .
Giải hệ phơng trình :
Giải phơng trình : x4 – 10x3 – 2(m – 11 )x2 + 2 ( 5m +6)x +2m = 0
Câu 4 ( 3 điểm )
Cho tam giác nhọn ABC nội tiếp đờng tròn tâm O . Đờng phân giác trong của góc A , B cắt đờng tròn tâm O tại D và E , gọi giao điểm hai đờng phân giác là I , đờng thẳng DE cắt CA, CB lần lợt tại M , N .
Chứng minh tam giác AIE và tam giác BID là tam giác cân .
Chứng minh tứ giác AEMI là tứ giác nội tiếp và MI // BC .
Tứ giác CMIN là hình gì ?
Đề số 8
Câu1 ( 2 điểm )
Tìm m để phơng trình ( x2 + x + m) ( x2 + mx + 1 ) = 0 có 4 nghiệm phân biệt .
Câu 2 ( 3 điểm )
Cho hệ phơng trình :
Giải hệ khi m = 3
Tìm m để phơng trình có nghiệm x > 1 , y > 0 .
Câu 3 ( 1 điểm )
Cho x , y là hai số dơng thoả mãn x5+y5 = x3 + y3 . Chứng minh x2 + y2 1 + xy
Câu 4 ( 3 điểm )
Cho tứ giác ABCD nội tiếp đờng tròn (O) . Chứng minh
AB.CD + BC.AD = AC.BD
Cho tam giác nhọn ABC nội tiếp trong đờng tròn (O) đờng kính AD . Đờng cao của tam giác kẻ từ đỉnh A cắt cạnh BC tại K và cắt đờng tròn (O) tại E .
Chứng minh : DE//BC .
Chứng minh : AB.AC = AK.AD .
Gọi H là trực tâm của tam giác ABC . Chứng minh tứ giác BHCD là hình bình hành .
Đề số 9
Câu 1 ( 2 điểm )
Trục căn thức ở mẫu các biểu thức sau :
; ;
Câu 2 ( 3 điểm )
Cho phơng trình : x2 – ( m+2)x + m2 – 1 = 0 (1)
Gọi x1, x2 là hai nghiệm của phơng trình .Tìm m thoả mãn x1 – x2 = 2 .
Tìm giá trị nguyên nhỏ nhất của m để phơng trình có hai nghiệm khác nhau .
Câu 3 ( 2 điểm )
Cho
Lập một phơng trình bậc hai có các hệ số bằng số và có các nghiệm là x1 =
Câu 4 ( 3 điểm )
Cho hai đờng tròn (O1) và (O2) cắt nhau tại A và B . Một đờng thẳng đi qua A cắt đờng tròn (O1) , (O2) lần lợt tại C,D , gọi I , J là trung điểm của AC và AD .
Chứng minh tứ giác O1IJO2 là hình thang vuông .
Gọi M là giao diểm của CO1 và DO2 . Chứng minh O1 , O2 , M , B nằm trên một đờng tròn
E là trung điểm của IJ , đờng thẳng CD quay quanh A . Tìm tập hợp điểm E.
Xác định vị trí của dây CD để dây CD có độ dài lớn nhất .
Đề số 10
Câu 1 ( 3 điểm )
1)Vẽ đồ thị của hàm số : y =
2)Viết phơng trình đờng thẳng đi qua điểm (2; -2) và (1 ; -4 )
Tìm giao điểm của đờng thẳng vừa tìm đợc với đồ thị trên .
Câu 2 ( 3 điểm )
a) Giải phơng trình :
b)Tính giá trị của biểu thức
với
Câu 3 ( 3 điểm )
Cho tam giác ABC , góc B và góc C nhọn . Các đờng tròn đờng kính AB , AC cắt nhau tại D . Một đờng thẳng qua A cắt đờng tròn đờng kính AB , AC lần lợt tại E và F .
Chứng minh B , C , D thẳng hàng .
Chứng minh B, C , E , F nằm trên một đờng tròn .
Xác định vị trí của đờng thẳng qua A để EF có độ dài lớn nhất .
Câu 4 ( 1 điểm )
Cho F(x) =
Tìm các giá trị của x để F(x) xác định .
Tìm x để F(x) đạt giá trị lớn nhất .
Đề số 11
Câu 1 ( 3 điểm )
Vẽ đồ thị hàm số
Viết phơng trình đờng thẳng đi qua hai điểm ( 2 ; -2 ) và ( 1 ; - 4 )
Tìm giao điểm của đờng thẳng vừa tìm đợc với đồ thị trên .
Câu 2 ( 3 điểm )
Giải phơng trình :
Giải phơng trình :
Câu 3 ( 3 điểm )
Cho hình bình hành ABCD , đờng phân giác của góc BAD cắt DC và BC theo thứ tự tại M và N . Gọi O là tâm đờng tròn ngoại tiếp tam giác MNC .
Chứng minh các tam giác DAM , ABN , MCN , là các tam giác cân .
Chứng minh B , C , D , O nằm trên một đờng tròn .
Câu 4 ( 1 điểm )
Cho x + y = 3 và y . Chứng minh x2 + y2
Đề số 12
Câu 1 ( 3 điểm )
Giải phơng trình :
Xác định a để tổng bình phơng hai nghiệm của phơng trình x2 +ax +a –2 = 0 là bé nhất .
Câu 2 ( 2 điểm )
Trong mặt phẳng toạ độ cho điểm A ( 3 ; 0) và đờng thẳng x – 2y = - 2 .
Vẽ đồ thị của đờng thẳng . Gọi giao điểm của đờng thẳng với trục tung và trục hoành là B và E .
Viết phơng trình đờng thẳng qua A và vuông góc với đờng thẳng x – 2y = -2 .
Tìm toạ độ giao điểm C của hai đờng thẳng đó . Chứng minh rằng EO. EA = EB . EC và tính diện tích của tứ giác OACB .
Câu 3 ( 2 điểm )
Giả sử x1 và x2 là hai nghiệm của phơng trình :
x2 –(m+1)x +m2 – 2m +2 = 0 (1)
Tìm các giá trị của m để phơng trình có nghiệm kép , hai nghiệm phân biệt .
Tìm m để đạt giá trị bé nhất , lớn nhất .
Câu 4 ( 3 điểm )
Cho tam giác ABC nội tiếp đờng tròn tâm O . Kẻ đờng cao AH , gọi trung điểm của AB , BC theo thứ tự là M , N và E , F theo thứ tự là hình chiếu vuông góc của của B , C trên đờng kính AD .
Chứng minh rằng MN vuông góc với HE .
Chứng minh N là tâm đờng tròn ngoại tiếp tam giác HEF .
Đề số 13
Câu 1 ( 2 điểm )
So sánh hai số :
Câu 2 ( 2 điểm )
Cho hệ phơng trình :
Gọi nghiệm của hệ là ( x , y ) , tìm giá trị của a để x2 + y2 đạt giá trị nhỏ nhất .
Câu 3 ( 2 điểm )
Giả hệ phơng trình :
Câu 4 ( 3 điểm )
1) Cho tứ giác lồi ABCD các cặp cạnh đối AB , CD cắt nhau tại P và BC , AD cắt nhau tại Q . Chứng minh rằng đờng tròn ngoại tiếp các tam giác ABQ , BCP , DCQ , ADP cắt nhau tại một điểm .
Cho tứ giác ABCD là tứ giác nội tiếp . Chứng minh
Câu 4 ( 1 điểm )
Cho hai số dơng x , y có tổng bằng 1 . Tìm giá trị nhỏ nhất của :
Đề số 14
Câu 1 ( 2 điểm )
Tính giá trị của biểu thức :
Câu 2 ( 3 điểm )
Giải và biện luận phơng trình :
(m2 + m +1)x2 – 3m = ( m +2)x +3
Cho phơng trình x2 – x – 1 = 0 có hai nghiệm là x1 , x2 . Hãy lập phơng trình bậc hai có hai nghiệm là :
Câu 3 ( 2 điểm )
Tìm các giá trị nguyên của x để biểu thức : là nguyên .
Câu 4 ( 3 điểm )
Cho đờng tròn tâm O và cát tuyến CAB ( C ở ngoài đờng tròn ) . Từ điểm chính giữa của cung lớn AB kẻ đờng kính MN cắt AB tại I , CM cắt đờng tròn tại E , EN cắt đờng thẳng AB tại F .
Chứng minh tứ giác MEFI là tứ giác nội tiếp .
Chứng minh góc CAE bằng góc MEB .
Chứng minh : CE . CM = CF . CI = CA . CB
Đề số 15
Câu 1 ( 2 điểm )
Giải hệ phơng trình :
Câu 2 ( 2 điểm )
Cho hàm số : và y = - x – 1
Vẽ đồ thị hai hàm số trên cùng một hệ trục toạ độ .
Viết phơng trình các đờng thẳng song song với đờng thẳng y = - x – 1 và cắt đồ thị hàm số tại điểm có tung độ là 4 .
Câu 2 ( 2 điểm )
Cho phơng trình : x2 – 4x + q = 0
Với giá trị nào của q thì phơng trình có nghiệm .
Tìm q để tổng bình phơng các nghiệm của phơng trình là 16 .
Câu 3 ( 2 điểm )
Tìm số nguyên nhỏ nhất x thoả mãn phơng trình :
Giải phơng trình :
Câu 4 ( 2 điểm )
Cho tam giác vuông ABC ( góc A = 1 v ) có AC < AB , AH là đờng cao kẻ từ đỉnh A . Các tiếp tuyến tại A và B với đờng tròn tâm O ngoại tiếp tam giác ABC cắt nhau tại M . Đoạn MO cắt cạnh AB ở E , MC cắt đờng cao AH tại F . Kéo dài CA cho cắt đờng thẳng BM ở D . Đờng thẳng BF cắt đờng thẳng AM ở N .
Chứng minh OM//CD và M là trung điểm của đoạn thẳng BD .
Chứng minh EF // BC .
Chứng minh HA là tia phân giác của góc MHN .
Đề số 16
Câu 1 : ( 2 điểm )
Trong hệ trục toạ độ Oxy cho hàm số y = 3x + m (*)
1) Tính giá trị của m để đồ thị hàm số đi qua : a) A( -1 ; 3 ) ; b) B( - 2 ; 5 )
2) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là - 3 .
3) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là - 5 .
Câu 2 : ( 2,5 điểm )
Cho biểu thức :
a) Rút gọn biểu thức A .
b) Tính giá trị của A khi x =
c) Với giá trị nào của x thì A đạt giá trị nhỏ nhất .
Câu 3 : ( 2 điểm )
Cho phơng trình bậc hai : và gọi hai nghiệm của phơng trình là x1 và x2 . Không giải phơng trình , tính giá trị của các biểu thức sau :
a) b)
c) d)
Câu 4 ( 3.5 điểm )
Cho tam giác ABC vuông ở A và một điểm D nằm giữa A và B . Đờng tròn đờng kính BD cắt BC tại E . Các đờng thẳng CD , AE lần lợt cắt đờng tròn tại các điểm thứ hai F , G . Chứng minh :
a) Tam giác ABC đồng dạng với tam giác EBD .
b) Tứ giác ADEC và AFBC nội tiếp đợc trong một đờng tròn .
c) AC song song với FG .
d) Các đờng thẳng AC , DE và BF đồng quy .
Đề số 17
Câu 1 ( 2,5 điểm )
Cho biểu thức : A =
a) Với những giá trị nào của a thì A xác định .
b) Rút gọn biểu thức A .
c) Với những giá trị nguyên nào của a thì A có giá trị nguyên .
Câu 2 ( 2 điểm )
Một ô tô dự định đi từ A đền B trong một thời gian nhất định . Nếu xe chạy với vận tốc 35 km/h thì đến chậm mất 2 giờ . Nếu xe chạy với vận tốc 50 km/h thì đến sớm hơn 1 giờ . Tính quãng đờng AB và thời
gian dự định đi lúc đầu .
Câu 3 ( 2 điểm )
a) Giải hệ phơng trình :
b) Giải phơng trình :
Câu 4 ( 4 điểm )
Cho điểm C thuộc đoạn thẳng AB sao cho AC = 10 cm ;CB = 40 cm . Vẽ về cùng một nửa mặt phẳng bờ là AB các nửa đờng tròn đờng kính theo thứ tự là AB , AC , CB có tâm lần lợt là O , I , K . Đờng vuông góc với AB tại C cắt nửa đờng tròn (O) ở E . Gọi M , N theo thứ tự là giao điểm cuae EA , EB với các nửa đờng tròn (I) , (K) . Chứng minh :
a) EC = MN .
b) MN là tiếp tuyến chung của các nửa đờng tròn (I) và (K) .
c) Tính độ dài MN .
d) Tính diện tích hình đợc giới hạn bởi ba nửa đờng tròn .
Đề 18
Câu 1 ( 2 điểm )
Cho biểu thức : A =
1) Rút gọn biểu thức A .
2) Chứng minh rằng biểu thức A luôn dơng với mọi a .
Câu 2 ( 2 điểm )
Cho phơng trình : 2x2 + ( 2m - 1)x + m - 1 = 0
1) Tìm m để phơng trình có hai nghiệm x1 , x2 thoả mãn 3x1 - 4x2 = 11 .
2) Tìm đẳng thức liên hệ giữa x1 và x2 không phụ thuộc vào m .
3) Với giá trị nào của m thì x1 và x2 cùng dơng .
Câu 3 ( 2 điểm )
Hai ô tô khởi hành cùng một lúc đi từ A đến B cách nhau 300 km . Ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 10 km nên đến B sớm hơn ô tô thứ hai 1 giờ . Tính vận tốc mỗi xe ô tô .
Câu 4 ( 3 điểm )
Cho tam giác ABC nội tiếp đờng tròn tâm O . M là một điểm trên cung AC ( không chứa B ) kẻ MH vuông góc với AC ; MK vuông góc với BC .
1) Chứng minh tứ giác MHKC là tứ giác nội tiếp .
2) Chứng minh
3) Chứng minh D AMB đồng dạng với D HMK .
Câu 5 ( 1 điểm )
Tìm nghiệm dơng của hệ :
Để 19
( Thi tuyển sinh lớp 10 - THPT năm 2006 - 2007 - Hải dơng - 120 phút - Ngày 28 / 6 / 2006
Câu 1 ( 3 điểm )
1) Giải các phơng trình sau :
a) 4x + 3 = 0
b) 2x - x2 = 0
2) Giải hệ phơng trình :
Câu 2( 2 điểm )
1) Cho biểu thức : P =
a) Rút gọn P .
b) Tính giá trị của P với a = 9 .
2) Cho phơng trình : x2 - ( m + 4)x + 3m + 3 = 0 ( m là tham số )
a) Xác định m để phơng trình có một nghiệm bằng 2 . Tìm nghiệm còn lại .
b) Xác định m để phơng trình có hai nghiệm x1 ; x2 thoả mãn
Câu 3 ( 1 điểm )
Khoảng cách giữa hai thành phố A và B là 180 km . Một ô tô đi từ A đến B , nghỉ 90 phút ở B , rồi lại từ B về A . Thời gian lúc đi đến lúc trở về A là 10 giờ . Biết vận tốc lúc về kém vận tốc lúc đi là 5 km/h . Tính vận tốc lúc đi của ô tô .
Câu 4 ( 3 điểm )
Tứ giác ABCD nội tiếp đờng tròn đờng kính AD . Hai đờng chéo AC , BD cắt nhau tại E . Hình chiếu vuông góc của E trên AD là F . Đờng thẳng CF cắt đờng tròn tại điểm thứ hai là M . Giao điểm của BD và CF là N
Chứng minh :
a) CEFD là tứ giác nội tiếp .
b) Tia FA là tia phân giác của góc BFM .
c) BE . DN = EN . BD
Câu 5 ( 1 điểm )
Tìm m để giá trị lớn nhất của biểu thức bằng 2 .
Để 20
Câu 1 (3 điểm )
1) Giải các phơng trình sau :
a) 5( x - 1 ) = 2
b) x2 - 6 = 0
2) Tìm toạ độ giao điểm của đờng thẳng y = 3x - 4 với hai trục toạ độ .
Câu 2 ( 2 điểm )
1) Giả sử đờng thẳng (d) có phơng trình : y = ax + b .
Xác định a , b để (d) đi qua hai điểm A ( 1 ; 3 ) và B ( - 3 ; - 1)
2) Gọi x1 ; x2 là hai nghiệm của phơng trình x2 - 2( m - 1)x - 4 = 0 ( m là tham số )
Tìm m để :
3) Rút gọn biểu thức : P =
Câu 3( 1 điểm)
Một hình chữ nhật có diện tích 300 m2 . Nếu giảm chiều rộng đi 3 m , tăng chiều dài thêm 5m thì ta đợc hình chữ nhật mới có diện tích bằng diện tích bằng diện tích hình chữ nhật ban đầu . Tính chu vi hình chữ nhật ban đầu .
Câu 4 ( 3 điểm )
Cho điểm A ở ngoài đờng tròn tâm O . Kẻ hai tiếp tuyến AB , AC với đờng tròn (B , C là tiếp điểm ) . M là điểm bất kỳ trên cung nhỏ BC ( M ạ B ; M ạ C ) . Gọi D , E , F tơng ứng là hình chiếu vuông góc của M trên các đờng thẳng AB , AC , BC ; H là giao điểm của MB và DF ; K là giao điểm của MC và EF .
1) Chứng minh :
a) MECF là tứ giác nội tiếp .
b) MF vuông góc với HK .
2) Tìm vị trí của M trên cung nhỏ BC để tích MD . ME lớn nhất .
Câu 5 ( 1 điểm ) Trong mặt phẳng toạ độ ( Oxy ) cho điểm A ( -3 ; 0 ) và Parabol (P) có phơng trình y = x2 . Hãy tìm toạ độ của điểm M thuộc (P) để cho độ dài đoạn thẳng AM nhỏ nhất .
II, Các đề thi vào ban tự nhiên
Đề 1
Câu 1 : ( 3 điểm ) iải các phương trình
3x2 – 48 = 0 .
x2 – 10 x + 21 = 0 .
Câu 2 : ( 2 điểm )
Tìm các giá trị của a , b biết rằng đồ thị của hàm số y = ax + b đi qua hai điểm
A( 2 ; - 1 ) và B (
b) Với giá trị nào của m thì đồ thị của các hàm số y = mx + 3 ; y = 3x –7 và đồ thị của hàm số xác định ở câu ( a ) đồng quy .
Câu 3 ( 2 điểm ) Cho hệ phương trình .
Giải hệ khi m = n = 1 .
Tìm m , n để hệ đã cho có nghiệm
Câu 4 : ( 3 điểm )
Cho tam giác vuông ABC ( = 900 ) nội tiếp trong đường tròn tâm O . Trên cung nhỏ AC ta lấy một điểm M bất kỳ ( M khác A và C ) . Vẽ đường tròn tâm A bán kính AC , đường tròn này cắt đường tròn (O) tại điểm D ( D khác C ) . Đoạn thẳng BM cắt đường tròn tâm A ở điểm N .
Chứng minh MB là tia phân giác của góc .
Chứng minh BC là tiếp tuyến của đường tròn tâm A nói trên .
So sánh góc CNM với góc MDN .
Cho biết MC = a , MD = b . Hãy tính đoạn thẳng MN theo a và b .
đề số 2
Câu 1 : ( 3 điểm )
Cho hàm số : y = ( P )
Tính giá trị của hàm số tại x = 0 ; -1 ; ; -2 .
Biết f(x) = tìm x .
Xác định m để đường thẳng (D) : y = x + m – 1 tiếp xúc với (P) .
Câu 2 : ( 3 điểm )
Cho hệ phương trình :
Giải hệ khi m = 1 .
Giải và biện luận hệ phương trình .
Câu 3 : ( 1 điểm )
Lập phương trình bậc hai biết hai nghiệm của phương trình là :
Câu 4 : ( 3 điểm )
Cho ABCD là một tứ giác nội tiếp . P là giao điểm của hai đờng chéo AC và BD .
Chứng minh hình chiếu vuông góc của P lên 4 cạnh của tứ giác là 4 đỉnh của một tứ giác có đường tròn nội tiếp .
M là một điểm trong tứ giác sao cho ABMD là hình bình hành . Chứng minh rằng nếu góc CBM = góc CDM thì góc ACD = góc BCM .
Tìm điều kiện của tứ giác ABCD để :
Đề số 3
Câu 1 ( 2 điểm ) .
Giải phương trình
1- x - = 0
Câu 2 ( 2 điểm ) .
Cho Parabol (P) : y = và đường thẳng (D) : y = px + q .
Xác định p và q để đường thẳng (D) đi qua điểm A ( - 1 ; 0 ) và tiếp xúc với (P) . Tìm toạ độ tiếp điểm .
Câu 3 : ( 3 điểm )
Trong cùng một hệ trục toạ độ Oxy cho parabol (P) :
và đường thẳng (D) :
Vẽ (P) .
Tìm m sao cho (D) tiếp xúc với (P) .
Chứng tỏ (D) luôn đi qua một điểm cố định .
Câu 4 ( 3 điểm ) .
Cho tam giác vuông ABC ( góc A = 900 ) nội tiếp đường tròn tâm O , kẻ đường kính AD .
Chứng minh tứ giác ABCD là hình chữ nhật .
Gọi M , N thứ tự là hình chiếu vuông góc của B , C trên AD , AH là đường cao của tam giác ( H trên cạnh BC ) . Chứng minh HM vuông góc với AC .
Xác định tâm đường tròn ngoại tiếp tam giác MHN .
Gọi bán kính đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC là R và r . Chứng minh
Đề số 4
Câu 1 ( 3 điểm ) .
Giải các phương trình sau .
x2 + x – 20 = 0 .
Câu 2 ( 2 điểm )
Cho hàm số y = ( m –2 ) x + m + 3 .
Tìm điều kiệm của m để hàm số luôn nghịch biến .
Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hành độ là 3 .
Tìm m để đồ thị các hàm số y = - x + 2 ; y = 2x –1và y = (m – 2 )x + m + 3 đồng quy .
Câu 3 ( 2 điểm )
Cho phương trình x2 – 7 x + 10 = 0 . Không giải phương trình tính .
Câu 4 ( 4 điểm )
Cho tam giác ABC nội tiếp đường tròn tâm O , đường phân giác trong của góc A cắt cạnh BC tại D và cắt đường tròn ngoại tiếp tại I .
Chứng minh rằng OI vuông góc với BC .
Chứng minh BI2 = AI.DI .
Gọi H là hình chiếu vuông góc của A trên BC .
Chứng minh góc BAH = góc CAO .
d) Chứng minh góc HAO =
Đề số 5
Câu 1 ( 3 điểm ) . Cho hàm số y = x2 có đồ thị là đường cong Parabol (P) .
Chứng minh rằng điểm A( - nằm trên đường cong (P) .
Tìm m để để đồ thị (d ) của hàm số y = ( m – 1 )x + m ( m R , m 1 ) cắt đường cong (P) tại một điểm .
Chứng minh rằng với mọi m khác 1 đồ thị (d ) của hàm số y = (m-1)x + m luôn đi qua một điểm cố định .
Câu 2 ( 2 điểm ) .
Cho hệ phương trình :
Giải hệ phương trình với m = 1
Giải biện luận hệ phương trình theo tham số m .
Tìm m để hệ phương trình có nghiệm thoả mãn x2 + y2 = 1 .
Câu 3 ( 3 điểm )
Giải phương trình
Câu 4 ( 3 điểm )
Cho tam giác ABC , M là trung điểm của BC . Giả sử gócBAM = Góc BCA.
Chứng minh rằng tam giác ABM đồng dạng với tam giác CBA .
Chứng minh minh : BC2 = 2 AB2 . So sánh BC và đường chéo hình vuông cạnh là AB .
Chứng tỏ BA là tiếp tuyến của đường tròn ngoại tiếp tam giác AMC .
Đường thẳng qua C và song song với MA , cắt đường thẳng AB ở D . Chứng tỏ đường tròn ngoại tiếp tam giác ACD tiếp xúc với BC .
Đề số 6 .
Câu 1 ( 3 điểm )
a) Giải phương trình :
Cho Parabol (P) có phương trình y = ax2 . Xác định a để (P) đi qua điểm A( -1; -2) . Tìm toạ độ các giao điểm của (P) và đường trung trực của đoạn OA .
Câu 2 ( 2 điểm )
Giải hệ phương trình
Xác định giá trị của m sao cho đồ thị hàm số (H) : y = và đường thẳng (D) : y = - x + m tiếp xúc nhau .
Câu 3 ( 3 điểm )
Cho phương trình x2 – 2 (m + 1 )x + m2 - 2m + 3 = 0 (1).
Giải phương trình với m = 1 .
Xác định giá trị của m để (1) có hai nghiệm trái dấu .
Tìm m để (1) có một nghiệm bằng 3 . Tìm nghiệm kia .
Câu 4 ( 3 điểm )
Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB . Hạ BN và DM cùng vuông góc với đường chéo AC .
Chứng minh :
Tứ giác CBMD nội tiếp .
Khi điểm D di động trên trên đường tròn thì không đổi .
DB . DC = DN . AC
Đề số 7
Câu 1 ( 3 điểm )
Giải các phương trình :
x4 – 6x2- 16 = 0 .
x2 - 2 - 3 = 0
Câu 2 ( 3 điểm )
Cho phương trình x2 – ( m+1)x + m2 – 2m + 2 = 0 (1)
Giải phương trình với m = 2 .
Xác định giá trị của m để phương trình có nghiệm kép . Tìm nghiệm kép đó .
Với giá trị nào của m thì đạt giá trị bé nhất , lớn nhất .
Câu 3 ( 4 điểm ) .
Cho tứ giác ABCD nội tiếp trong đường tròn tâm O . Gọi I là giao điểm của hai đường chéo AC và BD , còn M là trung điểm của cạnh CD . Nối MI kéo dài cắt cạnh AB ở N . Từ B kẻ đường thẳng song song với MN , đường thẳng đó cắt các đường thẳng AC ở E . Qua E kẻ đường thẳng song song với CD , đường thẳng này cắt đường thẳng BD ở F .
Chứng minh tứ giác ABEF nội tiếp .
Chứng minh I là trung điểm của đoạn thẳng BF và AI . IE = IB2 .
Chứng minh
đề số 8
Câu 1 ( 2 điểm )
Phân tích thành nhân tử .
x2- 2y2 + xy + 3y – 3x .
x3 + y3 + z3 - 3xyz .
Câu 2 ( 3 điểm )
Cho hệ phương trình .
Giải hệ phương trình khi m = 1 .
Tìm m để hệ có nghiệm đồng thời thoả mãn điều kiện ;
Câu 3 ( 2 điểm )
Cho hai đường thẳng y = 2x + m – 1 và y = x + 2m .
Tìm giao điểm của hai đường thẳng nói trên .
Tìm tập hợp các giao điểm đó .
Câu 4 ( 3 điểm )
Cho đường tròn tâm O . A là một điểm ở ngoài đường tròn , từ A kẻ tiếp tuyến AM , AN với đường tròn , cát tuyến từ A cắt đường tròn tại B và C ( B nằm giữa A và C ) . Gọi I là trung điểm của BC .
Chứng minh rằng 5 điểm A , M , I , O , N nằm trên một đường tròn .
Một đường thẳng qua B song song với AM cắt MN và MC lần lượt tại E và F . Chứng minh tứ giác BENI là tứ giác nội tiếp và E là trung điểm của EF .
Đề số 9
Câu 1 ( 3 điểm )
Cho phương trình : x2 – 2 ( m + n)x + 4mn = 0 .
Giải phương trình khi m = 1 ; n = 3 .
Chứng minh rằng phương trình luôn có nghiệm với mọi m ,n .
Gọi x1, x2, là hai nghiệm của phương trình . Tính theo m ,n .
Câu 2 ( 2 điểm )
Giải các phương trình .
x3 – 16x = 0
Câu 3 ( 2 điểm )
Cho hàm số : y = ( 2m – 3)x2 .
Khi x < 0 tìm các giá trị của m để hàm số luôn đồng biến .
Tìm m để đồ thị hàm số đi qua điểm ( 1 , -1 ) . Vẽ đồ thị với m vừa tìm được .
Câu 4 (3điểm )
Cho tam giác nhọn ABC và đường kính BON . Gọi H là trực tâm của tam giác ABC , Đường thẳng BH cắt đường tròn ngoại tiếp tam giác ABC tại M .
Chứng minh tứ giác AMCN là hình thanng cân .
Gọi I là trung điểm của AC . Chứng minh H , I , N thẳng hàng .
Chứng minh rằng BH = 2 OI và tam giác CHM cân .
đề số 10 .
Câu 1 ( 2 điểm )
Cho phương trình : x2 + 2x – 4 = 0 . gọi x1, x2, là nghiệm của phương trình .
Tính giá trị của biểu thức :
Câu 2 ( 3 điểm)
Cho hệ phương trình
Giải hệ phương trình khi a = 1
Gọi nghiệm của hệ phương trình là ( x , y) . Tìm các giá trị của a để x + y = 2 .
Câu 3 ( 2 điểm )
Cho phương trình x2 – ( 2m + 1 )x + m2 + m – 1 =0.
Chứng minh rằng phương trình luôn có nghiệm với mọi m .
Gọi x1, x2, là hai nghiệm của phương trình . Tìm m sao cho : ( 2x1 – x2 )( 2x2 – x1 ) đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất ấy .
Hãy tìm một hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào m .
Câu 4 ( 3 điểm )
Cho hình thoi ABCD có góc A = 600 . M là một điểm trên cạnh BC , đường thẳng AM cắt cạnh DC kéo dài tại N .
Chứng minh : AD2 = BM.DN .
Đường thẳng DM cắt BN tại E . Chứng minh tứ giác BECD nội tiếp .
Khi hình thoi ABCD cố định . Chứng minh điểm E nằm trên một cung tròn cố định khi m chạy trên BC .
Đề thi vào 10 hệ THPT chuyên 1999 Đại học khoa học tự nhiên.
Cho các số a, b, c thỏa mãn điều kiện: .Hãy tính giá trị biểu thức .
a) Giải phương trình b) Giải hệ phương trình :
Tìm tất cả các số nguyên dương n sao cho n2 + 9n – 2 chia hết cho n + 11.
Cho vòng tròn (C) và điểm I nằm trong vòng tròn. Dựng qua I hai dây cung bất kỳ MIN, EIF. Gọi M’, N’, E’, F’ là các trung điểm của IM, IN, IE, IF. a) Chứng minh rằng : tứ giác M’E’N’F’ là tứ giác nội tiếp.b) Giả sử I thay đổi, các dây cung MIN, EIF thay đổi. Chứng minh rằng vòng tròn ngoại tiếp tứ giác M’E’N’F’ có bán kính không đổi.c) Giả sử I cố định, các day cung MIN, EIF thay đổi nhưng luôn vuông góc với nhau. Tìm vị trí của các dây cung MIN, EIF sao cho tứ giác M’E’N’F’ có diện tích lớn nhất.
Các số dương x, y thay đổi thỏa mãn điều kiện: x + y = 1. Tìm giá trị nhỏ nhất của biểu thức :
Đề thi vào 10 hệ THPT chuyên toán 1992 Đại học tổng hợp
a) Giải phương trình (1 + x)4 = 2(1 + x4).b) Giải hệ phương trình
a) Phân tích đa thức x5 – 5x – 4 thành tích của một đa thức bậc hai và một đa thức bậc ba với hệ số nguyên.b) áp dụng kết quả trên để rút gọn biểu thức .
Cho D ABC đều. Chứng minh rằng với mọi điểm M ta luôn có MA ≤ MB + MC.
Cho é xOy cố định. Hai điểm A, B khác O lần lượt chạy trên Ox và Oy tương ứng sao cho OA.OB = 3.OA – 2.OB. Chứng minh rằng đường thẳng AB luôn đI qua một điểm cố định.
Cho hai số nguyên dương m, n thỏa mãn m > n và m không chia hết cho n. Biết rằng số dư khi chia m cho n bằng số dư khi chia m + n cho m – n. Hãy tính tỷ số .
Đề thi vào 10 hệ THPT chuyên 1996 Đại học khoa học tự nhiên.
Cho x > 0 hãy tìm giá trị nhỏ nhất của biểu thức .
Giải hệ phương trình
Chứng minh rằng với mọi n nguyên dương ta có : n3 + 5n 6.
Cho a, b, c > 0. Chứng minh rằng : .
Cho hình vuông ABCD cạnh bằng a. Gọi M, N, P, Q là các điểm bất kỳ lần lượt nằm trên các cạnh AB, BC, CD, DA.a) Chứng minh rằng 2a2 ≤ MN2 + NP2 +PQ2 + QM2 ≤ 4a2 .b) Giả sử M là một điểm cố định trên cạnh AB. Hãy xác định vị trí các điểm N, P, Q lần lượt trên các cạnh BC, CD, DA sao cho MNPQ là một hình vuông.
Đề thi vào 10 hệ THPT chuyên 2000 Đại học khoa học tự nhiên
a) Tính .b) GiảI hệ phương trình :
a) Giải phương trình b) Tìm tất cả các giá trị của a để phương trình có ít nhất một nghiệm nguyên.
Cho đường tròn tâm O nội tiếp trong hình thang ABCD (AB // CD), tiếp xúc với cạnh AB tại E và với cạnh CD tại F như hình a) Chứng minh rằng .b) Cho AB = a, CB = b (a < b), BE = 2AE. Tính diện tích hình thang ABCD.
Cho x, y là hai số thực bất kì khác không.Chứng minh rằng . Dấu đẳng thức xảy ra khi nào ?
Đề thi vào 10 hệ THPT chuyên 1998 Đại học khoa học tự nhiên
a) GiảI phương trình .b) GiảI hệ phương trình :
Các số a, b thỏa mãn điều kiện : Hãy tính giá trị biểu thức P = a2 + b2 .
Cho các số a, b, c ẻ [0,1]. Chứng minh rằng {Mờ}
Cho đường tròn (O) bán kính R và hai điểm A, B cố định trên (O) sao cho AB < 2R. Giả sử M là điểm thay đổi trên cung lớn của đường tròn .a) Kẻ từ B đường tròn vuông góc với AM, đường thẳng này cắt AM tại I và (O) tại N. Gọi J là trung điểm của MN. Chứng minh rằng khi M thay đổi trên đường tròn thì mỗi điểm I, J đều nằm trên một đường tròn cố định.b) Xác định vị trí của M để chu vi D AMB là lớn nhất.
a) Tìm các số nguyên dương n sao cho mỗi số n + 26 và n – 11 đều là lập phương của một số nguyên dương.b) Cho các số x, y, z thay đổi thảo mãn điều kiện x2 + y2 +z2 = 1. Hãy tìm giá trị lớn nhất của biểu thức .
Đề thi vào 10 hệ THPT chuyên 1993-1994 Đại học tổng hợp
a) GiảI phương trình .b) GiảI hệ phương trình :
Tìm max và min của biểu thức : A = x2y(4 – x – y) khi x và y thay đổi thỏa mãn điều kiện : x ³ 0, y ³ 0, x + y ≤ 6.
Cho hình thoi ABCD. Gọi R, r lần lượt là các bán kính các đường tròn ngoại tiếp các tam giác ABD, ABC và a là độ dài cạnh hình thoi. Chứng minh rằng .
Tìm tất cả các số nguyên dương a, b, c đôI một khác nhau sao cho biểu thức nhận giá trị nguyên dương.
Đề thi vào 10 hệ THPT chuyên 1991-1992 Đại học tổng hợp
a) Rút gọn biểu thức .b) Phân tích biêu thức P = (x – y)5 + (y-z)5 +(z - x )5 thành nhân tử.
a) Cho các số a, b, c, x, y, z thảo mãn các điều kiện hãy tính giá trị của biểu thức A = xa2 + yb2 + zc2.b) Cho 4 số a, b, c, d mỗi số đều không âm và nhỏ hơn hoặc bằng 1. Chứng minh rằng 0 ≤ a + b + c + d – ab – bc – cd – da ≤ 2. Khi nào đẳng thức xảy ra dấu bằng.
Cho trước a, d là các số nguyên dương. Xét các số có dạng :a, a + d, a + 2d, … , a + nd, …Chứng minh rằng trong các số đó có ít nhất một số mà 4 chữ số đầu tiên của nó là 1991.
Trong một cuộc hội thảo khoa học có 100 người tham gia. Giả sử mỗi người đều quen biết với ít nhất 67 người. Chứng minh rằng có thể tìm được một nhóm 4 người mà bất kì 2 người trong nhóm đó đều quen biết nhau.
Cho hình vuông ABCD. Lấy điểm M nằm trong hình vuông sao cho é MAB = é MBA = 150 . Chứng minh rằng D MCD đều.
Hãy xây dựng một tập hợp gồm 8 điểm có tính chất : Đường trung trực của đoạn thẳng nối hai điểm bất kì luôn đI qua ít nhất hai điểm của tập hợp đó.
Đề thi vào 10 hệ THPT chuyên Lý 1989-1990
Tìm tất cả các giá trị nguyên của x để biêu thức nguyên.
Tìm giá trị nhỏ nhất của biểu thức P = a2 + ab + b2 – 3a – 3b + 3.
a) Chứng minh rằng với mọi số nguyên dương m thì biểu thức m2 + m + 1 không phảI là số chính phương.b) Chứng minh rằng với mọi số nguyên dương m thì m(m + 1) không thể bằng tích của 4 số nguyên liên tiếp.
Cho D ABC vuông cân tại A. CM là trung tuyến. Từ A vẽ đường vuông góc với MC cắt BC tại H. Tính tỉ số .
Có 6 thành phố, trong đó cứ 3 thành phố bất kì thì có ít nhất 2 thnàh phố liên lạc được với nhau. Chứng minh rằng trong 6 thành phố nói trên tồn tại 3 thành phố liên lạc được với nhau.
Đề thi vào 10 hệ THPT chuyên năm 2004 Đại học khoa học tự nhiên(vòng1)
a) GiảI phương trình b) Tìm nghiệm nguyên cảu hệ
Cho các số thực dương a và b thỏa mãn a100 + b100 = a101 + b101 = a102 + b102 .Hãy tính giá trị biểu thức P = a2004 + b2004 .
Cho D ABC có AB=3cm, BC=4cm, CA=5cm. Đường cao, đường phân giác, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành 4 phần. Hãy tính diện tích mỗi phần.
Cho tứ giác ABCD nội tiếp trong đường tròn, có hai đường chéo AC, BD vuông góc với nhau tại H (H không trùng với tâm cảu đường tròn ). Gọi M và N lần lượt là chân các đường vuông góc hạ từ H xuống các đường thẳng AB và BC; P và Q lần lượt là các giao điểm của các đường thẳng MH và NH với các đường thẳng CD và DA. Chứng minh rằng đường thẳng PQ song song với đường thẳng AC và bốn điểm M, N, P, Q nằm trên cùng một đường tròn .
Tìm giá trị nhỏ nhất của biểu thức
Đề thi vào 10 hệ THPT chuyên năm 2004 Đại học khoa học tự nhiên(vòng 2)
giảI phương trình
GiảI hệ phương trình
Tìm giá trị nhỏ nhất của biểu thức với x, y là các số thực lớn hơn 1.
Cho hình vuông ABCD và điểm M nằm trong hình vuông.a) Tìm tất cả các vị trí của M sao cho é MAB = é MBC = é MCD = é MDA.b) Xét điểm M nằm trên đường chéo AC. Gọi N là chân đường vuông góc hạ từ M xuống AB và O là trung điểm của đoạn AM. Chứng minh rằng tỉ số có giá trị không đổi khi M di chuyển trên đường chéo AC.c) Với giả thiết M nằm trên đường chéo AC, xét các đường tròn (S) và (S’) có các đường kính tương ứng AM và CN. Hai tiếp tuyến chung của (S) và (S’) tiếp xúc với (S’) tại P và Q. Chứng minh rằng đường thẳng PQ tiếp xúc với (S).
Với số thực a, ta định nghĩa phần nguyên của số a là số nguyên lớn nhất không vượt quá a và kí hiệu là [a]. Dãy số x0, x1, x2 …, xn, … được xác định bởi công thức . Hỏi trong 200 số {x1, x2, …, x199} có bao nhiêu số khác 0 ?
Đề thi thử vào THPT Chu Văn An 2004
Cho biểu thức a) Rút gọn Pb) Cho . Hãy tính giá trị của P.
Cho phương trình mx2 – 2x – 4m – 1 = 0 (1)a) Tìm m để phương trình (1) nhận x = là nghiệm, hãy tìm nghiệm còn lại.b) Với m ạ 0 Chứng minh rằng phương trình (1) luôn có hai nghiệm x1, x2 phân biệt. Gọi A, B lần lượt là các điểm biểu diễn của các nghiệm x1, x2 trên trục số. Chứng minh rằng độ dài đoạn thẳng AB không đổi (Không chắc lắm)
Cho đường tròn (O;R) đường kính AB và một điểm M di động trên đường tròn (M khác A, B) Gọi CD lần lượt là điểm chính giữa cung nhỏ AM và BM.a) Chứng minh rằng CD = R và đường thẳng CD luôn tiếp xúc với một đường tròn cố định.b) Gọi P là hình chiếu vuông góc của điểm D lên đường thẳng AM. đường thẳng OD cắt dây BM tại Q và cắt đường tròn (O) tại giao điểm thứ hai S. Tứ giác APQS là hình gì ? Tại sao ?c) đường thẳng đI qua A và vuông góc với đường thẳng MC cắt đường thẳng OC tại H. Gọi E là trung điểm của AM. Chứng minh rằng HC = 2OE.d) Giả sử bán kính đường tròn nội tiếp D MAB bằng 1. Gọi MK là đường cao hạ từ M đến AB. Chứng minh rằng :
Đề thi vào 10 hệ THPT chuyên năm 2003 Đại học khoa học tự nhiên(vòng 2)
Cho phương trình x4 + 2mx2 + 4 = 0. Tìm giá trị của tham số m để phương trình có 4 nghiệm phân biệt x1, x2, x3, x4 thỏa mãn x14 + x24 + x34 + x44 = 32.
Giải hệ phương trình :
Tìm các số nguyên x, y thỏa mãn x2 + xy + y2 = x2y2 .
đường tròn (O) nội tiếp D ABC tiếp xúc với BC, CA, AB tương ứng tại D, E, F. Đường tròn tâm (O’) bàng tiếp trong góc é BAC của D ABC tiếp xúc với BC và phần kéo dài của AB, AC tương ứng tại P, M, N.a) Chứng minh rằng : BP = CD.b) Trên đường thẳng MN lấy các điểm I và K sao cho CK // AB, BI // AC. Chứng minh rằng : tứ giác BICE và BKCF là hình bình hành.c) Gọi (S) là đường tròn đi qua I, K, P. Chứng minh rằng (S) tiếp xúc với BC, BI, CK.
Số thực x thay đổi và thỏa mãn điều kiện : Tìm min của .
Đề thi vào 10 hệ THPT chuyên năm 2003 Đại học khoa học tự nhiên
Giải phương trình .
Giải hệ phương trình
Tím các số nguyên x, y thỏa mãn đẳng thức : .
Cho nửa đường tròn (O) đường kính AB = 2R. M, N là hai điểm trên nửa đường tròn (O) sao cho M thuộc cung AN và tổng các khoảng cách từ A, B đến đường thẳng MN bằng a) Tính độ dài MN theo R.b) Gọi giao điểm của hai dây AN và BM là I. Giao điểm của các đường thẳng AM và BN là K. Chứng minh rằng bốn điểm M, N, I, K cùng nằm trên một đường tròn , Tính bán kính của đường tròn đó theo R.c) Tìm giá trị lớn nhất của diện tích D KAB theo R khi M, N thay đổi nhưng vẫn thỏa mãn giả thiết của bài toán.
Cho x, y, z là các số thực thỏa mãn điều kiện : x + y + z + xy + yz + zx = 6. Chứng minh rằng : x2 + y2 + z2 ³ 3.
Đề thi vào 10 hệ THPT chuyên năm 2002 Đại học khoa học tự nhiên
a) Giải phương trình : . b) Tìm nghiệm nguyên của phương trình : x + xy + y = 9
Giải hệ phương trình : {M}
Cho mười số nguyên dương 1, 2, …, 10. Sắp xếp 10 số đó một cách tùy ý vào một hàng. Cộng mỗi số với số thứ tự của nó trong hàng ta được 10 tổng. Chứng minh rằng trong 10 tổng đó tồn tại ít nhất hai tổng có chữ số tận cùng giống nhau.
Tìm giá trị nhỏ nhất của biểu thức : Trong đó a, b, c là độ dài ba cạnh của một tam giác.
Đường tròn (C) tâm I nội tiếp D ABC tiếp xúc với các cạnh BC, CA, AB tương ứng tại A’, B’, C’ .a) Gọi các giao điểm của đường tròn (C) với các đoạn IA, IB, IC lần lượt tại M, N, P. Chứng minh rằng các đường thẳng A’M, B’N, C’P đồng quy.b) Kðo dài đoạn AI cắt đường tròn ngoại tiếp D ABC tại D (khác A). Chứng minh rằng trong đó r là bán kính đường tròn (C) .
Đề thi vào 10 hệ THPT chuyên năm 2002 Đại học khoa học tự nhiên
a) Giải phương trình : b) Giải hệ phương trình :
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng phương trình x2 + (a + b + c)x + ab + bc + ca = 0 vô nghiệm.
Tìm tất cả các số nguyên n sao cho n2 + 2002 là một số chính phương.
Tìm giá trị nhỏ nhất của biểt thức: Trong đó x, y, z là các số dương thay đổi thỏa mãn điều kiện x2 + y2 + z2 ≤ 3.
Cho hình vuông ABCD. M là điểm thay đổi trên cạnh BC (M không trùng với B) và N là điểm thay đổi trên cạnh CD (N không trùng D) sao cho é MAN = é MAB + é NAD.a) BD cắt AN, AM tương ứng tại p và Q. Chứng minh rằng 5 điểm P, Q, M, C, N cùng nằm trên một đường tròn.b) Chứng minh rằng đường thẳng MN luôn luôn tiếp xúc với một đường tròn cố định khi M và N thay đổi.c) Ký hiệu diện tích của D APQ là S và diện tích tứ giác PQMN là S’. Chứng minh rằng tỷ số không đổi khi M, N thay đổi.
Đề thi vào 10 hệ THPT chuyên năm 2001 Đại học khoa học tự nhiên
Tìm các gia trị nguyên x, y thỏa mãn đẳng thức: (y + 2)x2 + 1 = y2 .
a) Giải phương trình : . b) Giải hệ phương trình :
Cho nửa vòng tròn đường kính AB=2a. Trên đoạn AB lấy điểm M. Trong nửa mặt phẳng bờ AB chứa nửa vòng tròn, ta kẻ 2 tia Mx và My sao cho é AMx =é BMy =300 . Tia Mx cắt nửa vòng tròn ở E, tia My cắt nửa vòng tròn ở F. Kẻ EE’, FF’ vuông góc với AB.a) Cho AM= a/2, tính diện tích hình thang vuông EE’F’F theo a.b) Khi M di động trên AB. Chứng minh rằng đường thẳng EF luôn tiếp xúc với một vòng tròn cố định.
Giả sử x, y, z là các số thực khác 0 thỏa mãn : .Hãy tính giá trị của .
Với x, y, z là các số thực dương, hãy tìm giá trị lớn nhất của biểu thức:
Đề thi vào 10 năm 1989-1990 Hà Nội
Xét biểu thức a) Rút gọn A.b) Tìm giá trị x để A = -1/2 .
Một ô tô dự định đi từ A đến B với vận tốc 50 km/h. Sau khi đi được 2/3 quãng đường với vận tốc đó, vì đường khó đi nên người lái xe phải giảm vận tốc mỗi giờ 10 km trên quãng đường còn lại. Do đó ô tô đến B chậm 30 phút so với dự định. Tính quãng đường AB.
Cho hình vuông ABCD và một điểm E bất kì trên cạnh BC. Tia Ax ^ AE cắt cạnh CD kéo dài tại F. Kẻ trung tuyến AI của D AEF và kéo dài cắt cạnh CD tại K. Đường thẳng qua E và song song với AB cắt AI tại G. a) Chứng minh rằng AE = AF.b) Chứng minh rằng tứ giác EGFK là hình thoi.c) Chứng minh rằng hai tam giác AKF , CAF đồng dạng và AF2 = KF.CF.d) Giả sử E chạy trên cạnh BC. Chứng minh rằng EK = BE + điều kiện và chu vi D ECK không đổi.
Tìm giá trị của x để biểu thức đạt giá trị nhỏ nhất và tìm giá trị đó.
Đề thi tuyển sinh vào lớp 10 chuyên năm học 2000-2001. (1)
Tìm n nguyên dương thỏa mãn :
Cho biểu thức a) Với giá trị nào của x thì A xác định.b) Tìm x để A đạt giá trị nhỏ nhất.c) Tìm các giá trị nguyên của x để A nguyên.
Cho D ABC đều cạnh a. Điểm Q di động trên AC, điểm P di động trên tia đối của tia CB sao cho AQ. BP = a2 . Đường thẳng AP cắt đường thẳng BQ tại M. a) Chứng minh rằng tứ giác ABCM nội tiếp đường tròn .b) Tìm giá trị lớn nhất của MA + MC theo a.
Cho a, b, c > 0. Chứng minh rằng
Chứng minh rằng sin750 =
Đề thi tuyển sinh vào lớp 10 chuyên năm học 2000-2001. (2)
Cho biểu thức .a) Rút gọn P.b) Chứng minh rằng P < 1 với mọi giá trị của x ạ ±1.
Hai vòi nước cùng chảy vào bể thì sau 4 giờ 48 phút thì đầy. Nðu chảy cùng một thời gian như nhau thì lượng nước của vòi II bằng 2/3 lương nước của vòi I chảy được. Hỏi mỗi vòi chảy riêng thì sau bao lâu đầy bể.
Chứng minh rằng phương trình : có hai nghiệmx1 = và x2 = .
Cho đường tròn tâm O đường kính AB = 2R và một điểm M di động trên một nửa đường tròn ( M không trùng với A, B). Người ta vẽ một đường tròn tâm E tiếp xúc với đường tròn (O) tại M và tiếp xúc với đường kính AB. Đường tròn (E) cắt MA, MB lần lượt tại các điểm thứ hai là C, D.a) Chứng minh rằng ba điểm C, E, D thẳng hàng.b) Chứng minh rằng đường thẳng MN đi qua một điểm cố định K và tích KM.KN không đổi.c) Gọi giao điểm của các tia CN, DN với KB, KA lần lượt là P và Q. Xác định vị trí của M để diện tích D NPQ đạt giá trị lớn nhất và chứng tỏ khi đó chu vi D NPQ đại giá trị nhỏ nhất.d) Tìm quỹ tích điểm E.
Đề thi vào 10 hệ THPT chuyên năm 2001 Đại học khoa học tự nhiên
a) Cho f(x) = ax2 + bx + c có tính chất f(x) nhận giá trị nguyên khi x là số nguyên hỏi các hệ số a, b, c có nhất thiết phải là các số nguyên hay không ? Tại sao ?b) Tìm các số nguyên không âm x, y thỏa mãn đẳng thức :
Giải phương trình
Cho các số thực a, b, x, y thỏa mãn hệ : Tính giá trị của các biểu thức và
Cho đoạn thẳng Ab có trung điểm là O. Gọi d, d’ là các đường thẳng vuông góc với AB tương ứng tại A, B. Một góc vuông đỉnh O có một cạnh cắt d ở M, còn cạnh kia cắt d’ ở N. kẻ OH ^ MN. Vòng tròn ngoại tiếp D MHB cắt d ở điểm thứ hai là E khác M. MB cắt NA tại I, đường thẳng HI cắt EB ở K. Chứng minh rằng K nằm trên một đường tròn cố đinh khi góc vuông uqay quanh đỉnh O.
Cho 2001 đồng tiền, mỗi đồng tiền được sơn một mặt màu đỏ và một mặt màu xanh. Xếp 2001 đồng tiền đó theo một vòng tròn sao cho tất cả các đồng tiền đều có mặt xanh ngửa lên phía trên. Cho phép mỗi lần đổi mặt đồng thời 5 đồng tiền liên tiếp cạnh nhau. Hỏi với cánh làm như thế sau một số hữu hạn lần ta có thể làm cho tất cả các đồng tiền đều có mặt đỏ ngửa lên phía trên được hay không ? Tại sao ?
Đề thi tuyển sinh vào lớp 10 chuyên Toán Tin năm 2003-2004 Đại học sư phạm HN
Chứng minh rằng biểu thức sau có giá trị không phụ thộc vào x
Với mỗi số nguyên dương n, đặt Pn = 1.2.3….n. Chứng minh rằng a) 1 + 1.P1 + 2.P2 + 3.P3 +….+ n.Pn = Pn+1 .b)
Tìm các số nguyên dương n sao cho hai số x = 2n + 2003 và y = 3n + 2005 đều là những số chình phương.
Xét phương trình ẩn x : a) Giải phương trình ứng với a = -1.b) Tìm a để phương trình trên có đúng ba nghiệm phân biệt.
Qua một điểm M tùy ý đã cho trên đáy lớn AB của hình thang ABCD ta kẻ các đường thẳng song song với hai đường chéo AC và BD. Các đường thẳng song song này cắt hai cạnh BC và AD lần lượt tại E và F. Đoạn EF cắt AC và BD tại I và J tương ứng.a) Chứng minh rằng nếu H là trung điểm của IJ thì H cùng là trung điểm của EF.b) Trong trường hợp AB = 2CD, hãy chỉ ra vị trí của một điểm M trên AB sao cho EJ = JI = IF.
Đề thi tuyển sinh vào lớp 10 chuyên Toán Tin năm 2004 Đại học sư phạm HN
Cho x, y, z là ba số dương thay đổi thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức : .
Tìm tất cả bộ ba số dương thỏa mãn hệ phương trình :
Giải phương trình : .
Mỗi bộ ba số nguyên dương (x,y,z) thỏa mãn phương trình x2+y2+z2=3xyz được gọi là một nghiệm nguyên dương của phương trình này.a) Hãy chỉ ra 4 nghiệm nguyên dương khác của phương trình đã cho.b) Chứng minh rằng phương trình đã cho có vô số nghiệm nguyên dương.
Cho D ABC đều nội tiếp đường tròn (O). Một đường thẳng d thay đổi luôn đi qua A cắt các tiếp tuyến tại B và C của đường tròn (O) tương ứng tại M và N. Giả sử d cắt lại đường tròn (O) tại E (khác A), MC cắt BN tại F. Chứng minh rằng :a) D ACN đồng dạng với D MBA. D MBC đồng dạng với D BCN.b) tứ giác BMEF là tứ giác nội tiếpc) Đường thẳng EF luôn đi qua một điểm cố định khi d thay đổi nhưng luôn đi qua A.
Đề 1
Câu 1 : ( 3 điểm ) Giải các phơng trình
3x2 – 48 = 0 .
x2 – 10 x + 21 = 0 .
Câu 2 : ( 2 điểm )
Tìm các giá trị của a , b biết rằng đồ thị của hàm số y = ax + b đi qua hai điểm
A( 2 ; - 1 ) và B (
b) Với giá trị nào của m thì đồ thị của các hàm số y = mx + 3 ; y = 3x –7 và đồ thị của hàm số xác định ở câu ( a ) đồng quy .
Câu 3 ( 2 điểm ) Cho hệ phơng trình .
Giải hệ khi m = n = 1 .
Tìm m , n để hệ đã cho có nghiệm
Câu 4 : ( 3 điểm )
Cho tam giác vuông ABC ( = 900 ) nội tiếp trong đờng tròn tâm O . Trên cung nhỏ AC ta lấy một điểm M bất kỳ ( M khác A và C ) . Vẽ đờng tròn tâm A bán kính AC , đờng tròn này cắt đờng tròn (O) tại điểm D ( D khác C ) . Đoạn thẳng BM cắt đờng tròn tâm A ở điểm N .
Chứng minh MB là tia phân giác của góc .
Chứng minh BC là tiếp tuyến của đờng tròn tâm A nói trên .
So sánh góc CNM với góc MDN .
Cho biết MC = a , MD = b . Hãy tính đoạn thẳng MN theo a và b .
đề số 2
Câu 1 : ( 3 điểm )
Cho hàm số : y = ( P )
Tính giá trị của hàm số tại x = 0 ; -1 ; ; -2 .
Biết f(x) = tìm x .
Xác định m để đờng thẳng (D) : y = x + m – 1 tiếp xúc với (P) .
Câu 2 : ( 3 điểm )
Cho hệ phơng trình :
Giải hệ khi m = 1 .
Giải và biện luận hệ phơng trình .
Câu 3 : ( 1 điểm )
Lập phơng trình bậc hai biết hai nghiệm của phơng trình là :
Câu 4 : ( 3 điểm )
Cho ABCD là một tứ giác nội tiếp . P là giao điểm của hai đờng chéo AC và BD .
Chứng minh hình chiếu vuông góc của P lên 4 cạnh của tứ giác là 4 đỉnh của một tứ giác có đờng tròn nội tiếp .
M là một điểm trong tứ giác sao cho ABMD là hình bình hành . Chứng minh rằng nếu góc CBM = góc CDM thì góc ACD = góc BCM .
Tìm điều kiện của tứ giác ABCD để :
Đề số 3
Câu 1 ( 2 điểm ) .
Giải phơng trình
1- x - = 0
Câu 2 ( 2 điểm ) .
Cho Parabol (P) : y = và đờng thẳng (D) : y = px + q .
Xác định p và q để đờng thẳng (D) đi qua điểm A ( - 1 ; 0 ) và tiếp xúc với (P) . Tìm toạ độ tiếp điểm .
Câu 3 : ( 3 điểm )
Trong cùng một hệ trục toạ độ Oxy cho parabol (P) :
và đờng thẳng (D) :
Vẽ (P) .
Tìm m sao cho (D) tiếp xúc với (P) .
Chứng tỏ (D) luôn đi qua một điểm cố định .
Câu 4 ( 3 điểm ) .
Cho tam giác vuông ABC ( góc A = 900 ) nội tiếp đờng tròn tâm O , kẻ đờng kính AD .
Chứng minh tứ giác ABCD là hình chữ nhật .
Gọi M , N thứ tự là hình chiếu vuông góc của B , C trên AD , AH là đờng cao của tam giác ( H trên cạnh BC ) . Chứng minh HM vuông góc với AC .
Xác định tâm đờng tròn ngoại tiếp tam giác MHN .
Gọi bán kính đờng tròn ngoại tiếp và đờng tròn nội tiếp tam giác ABC là R và r . Chứng minh
Đề số 4
Câu 1 ( 3 điểm ) .
Giải các phơng trình sau .
x2 + x – 20 = 0 .
Câu 2 ( 2 điểm )
Cho hàm số y = ( m –2 ) x + m + 3 .
Tìm điều kiệm của m để hàm số luôn nghịch biến .
Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hành độ là 3 .
Tìm m để đồ thị các hàm số y = - x + 2 ; y = 2x –1và y = (m – 2 )x + m + 3 đồng quy .
Câu 3 ( 2 điểm )
Cho phơng trình x2 – 7 x + 10 = 0 . Không giải phơng trình tính .
Câu 4 ( 4 điểm )
Cho tam giác ABC nội tiếp đờng tròn tâm O , đờng phân giác trong của góc A cắt cạnh BC tại D và cắt đờng tròn ngoại tiếp tại I .
Chứng minh rằng OI vuông góc với BC .
Chứng minh BI2 = AI.DI .
Gọi H là hình chiếu vuông góc của A trên BC .
Chứng minh góc BAH = góc CAO .
d) Chứng minh góc HAO =
Đề số 5
Câu 1 ( 3 điểm ) . Cho hàm số y = x2 có đồ thị là đờng cong Parabol (P) .
Chứng minh rằng điểm A( - nằm trên đờng cong (P) .
Tìm m để để đồ thị (d ) của hàm số y = ( m – 1 )x + m ( m R , m 1 ) cắt đờng cong (P) tại một điểm .
Chứng minh rằng với mọi m khác 1 đồ thị (d ) của hàm số y = (m-1)x + m luôn đi qua một điểm cố định .
Câu 2 ( 2 điểm ) .
Cho hệ phơng trình :
Giải hệ phơng trình với m = 1
Giải biện luận hệ phơng trình theo tham số m .
Tìm m để hệ phơng trình có nghiệm thoả mãn x2 + y2 = 1 .
Câu 3 ( 3 điểm )
Giải phơng trình
Câu 4 ( 3 điểm )
Cho tam giác ABC , M là trung điểm của BC . Giả sử .
Chứng minh rằng tam giác ABM đồng dạng với tam giác CBA .
Chứng minh minh : BC2 = 2 AB2 . So sánh BC và đờng chéo hình vuông cạnh là AB .
Chứng tỏ BA là tiếp tuyến của đờng tròn ngoại tiếp tam giác AMC .
Đờng thẳng qua C và song song với MA , cắt đờng thẳng AB ở D . Chứng tỏ đờng tròn ngoại tiếp tam giác ACD tiếp xúc với BC .
Đề số 6 .
Câu 1 ( 3 điểm )
a) Giải phơng trình :
Cho Parabol (P) có phơng trình y = ax2 . Xác định a để (P) đi qua điểm A( -1; -2) . Tìm toạ độ các giao điểm của (P) và đờng trung trực của đoạn OA .
Câu 2 ( 2 điểm )
Giải hệ phơng trình
Xác định giá trị của m sao cho đồ thị hàm số (H) : y = và đờng thẳng (D) : y = - x + m tiếp xúc nhau .
Câu 3 ( 3 điểm )
Cho phơng trình x2 – 2 (m + 1 )x + m2 - 2m + 3 = 0 (1).
Giải phơng trình với m = 1 .
Xác định giá trị của m để (1) có hai nghiệm trái dấu .
Tìm m để (1) có một nghiệm bằng 3 . Tìm nghiệm kia .
Câu 4 ( 3 điểm )
Cho hình bình hành ABCD có đỉnh D nằm trên đờng tròn đờng kính AB . Hạ BN và DM cùng vuông góc với đờng chéo AC .
Chứng minh :
Tứ giác CBMD nội tiếp .
Khi điểm D di động trên trên đờng tròn thì không đổi .
DB . DC = DN . AC
Đề số 7
Câu 1 ( 3 điểm )
Giải các phơng trình :
x4 – 6x2- 16 = 0 .
x2 - 2 - 3 = 0
Câu 2 ( 3 điểm )
Cho phơng trình x2 – ( m+1)x + m2 – 2m + 2 = 0 (1)
Giải phơng trình với m = 2 .
Xác định giá trị của m để phơng trình có nghiệm kép . Tìm nghiệm kép đó .
Với giá trị nào của m thì đạt giá trị bé nhất , lớn nhất .
Câu 3 ( 4 điểm ) .
Cho tứ giác ABCD nội tiếp trong đờng tròn tâm O . Gọi I là giao điểm của hai đờng chéo AC và BD , còn M là trung điểm của cạnh CD . Nối MI kéo dài cắt cạnh AB ở N . Từ B kẻ đờng thẳng song song với MN , đờng thẳng đó cắt các đờng thẳng AC ở E . Qua E kẻ đờng thẳng song song với CD , đờng thẳng này cắt đờng thẳng BD ở F .
Chứng minh tứ giác ABEF nội tiếp .
Chứng minh I là trung điểm của đoạn thẳng BF và AI . IE = IB2 .
Chứng minh
đề số 8
Câu 1 ( 2 điểm )
Phân tích thành nhân tử .
x2- 2y2 + xy + 3y – 3x .
x3 + y3 + z3 - 3xyz .
Câu 2 ( 3 điểm )
Cho hệ phơng trình .
Giải hệ phơng trình khi m = 1 .
Tìm m để hệ có nghiệm đồng thời thoả mãn điều kiện ;
Câu 3 ( 2 điểm )
Cho hai đờng thẳng y = 2x + m – 1 và y = x + 2m .
Tìm giao điểm của hai đờng thẳng nói trên .
Tìm tập hợp các giao điểm đó .
Câu 4 ( 3 điểm )
Cho đờng tròn tâm O . A là một điểm ở ngoài đờng tròn , từ A kẻ tiếp tuyến AM , AN với đờng tròn , cát tuyến từ A cắt đờng tròn tại B và C ( B nằm giữa A và C ) . Gọi I là trung điểm của BC .
Chứng minh rằng 5 điểm A , M , I , O , N nằm trên một đờng tròn .
Một đờng thẳng qua B song song với AM cắt MN và MC lần lợt tại E và F . Chứng minh tứ giác BENI là tứ giác nội tiếp và E là trung điểm của EF .
Đề số 9
Câu 1 ( 3 điểm )
Cho phơng trình : x2 – 2 ( m + n)x + 4mn = 0 .
Giải phơng trình khi m = 1 ; n = 3 .
Chứng minh rằng phơng trình luôn có nghiệm với mọi m ,n .
Gọi x1, x2, là hai nghiệm của phơng trình . Tính theo m ,n .
Câu 2 ( 2 điểm )
Giải các phơng trình .
x3 – 16x = 0
Câu 3 ( 2 điểm )
Cho hàm số : y = ( 2m – 3)x2 .
Khi x < 0 tìm các giá trị của m để hàm số luôn đồng biến .
Tìm m để đồ thị hàm số đi qua điểm ( 1 , -1 ) . Vẽ đồ thị với m vừa tìm đợc .
Câu 4 (3điểm )
Cho tam giác nhọn ABC và đờng kính BON . Gọi H là trực tâm của tam giác ABC , Đờng thẳng BH cắt đờng tròn ngoại tiếp tam giác ABC tại M .
Chứng minh tứ giác AMCN là hình thanng cân .
Gọi I là trung điểm của AC . Chứng minh H , I , N thẳng hàng .
Chứng minh rằng BH = 2 OI và tam giác CHM cân .
đề số 10 .
Câu 1 ( 2 điểm )
Cho phơng trình : x2 + 2x – 4 = 0 . gọi x1, x2, là nghiệm của phơng trình .
Tính giá trị của biểu thức :
Câu 2 ( 3 điểm)
Cho hệ phơng trình
Giải hệ phơng trình khi a = 1
Gọi nghiệm của hệ phơng trình là ( x , y) . Tìm các giá trị của a để x + y = 2 .
Câu 3 ( 2 điểm )
Cho phơng trình x2 – ( 2m + 1 )x + m2 + m – 1 =0.
Chứng minh rằng phơng trình luôn có nghiệm với mọi m .
Gọi x1, x2, là hai nghiệm của phơng trình . Tìm m sao cho : ( 2x1 – x2 )( 2x2 – x1 ) đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất ấy .
Hãy tìm một hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào m .
Câu 4 ( 3 điểm )
Cho hình thoi ABCD có góc A = 600 . M là một điểm trên cạnh BC , đờng thẳng AM cắt cạnh DC kéo dài tại N .
Chứng minh : AD2 = BM.DN .
Đờng thẳng DM cắt BN tại E . Chứng minh tứ giác BECD nội tiếp .
Khi hình thoi ABCD cố định . Chứng minh điểm E nằm trên một cung tròn cố định khi m chạy trên BC .
Đề số 11
Câu 1 ( 3 điểm )
Cho biểu thức :
Tìm điều kiện của x để biểu thức A có nghĩa .
Rút gọn biểu thức A .
Giải phơng trình theo x khi A = -2 .
Câu 2 ( 1 điểm )
Giải phơng trình :
Câu 3 ( 3 điểm )
Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đờng thẳng (D) : y = - 2(x +1) .
Điểm A có thuộc (D) hay không ?
Tìm a trong hàm số y = ax2 có đồ thị (P) đi qua A .
Viết phơng trình đờng thẳng đi qua A và vuông góc với (D) .
Câu 4 ( 3 điểm )
Cho hình vuông ABCD cố định , có độ dài cạnh là a .E là điểm đi chuyển trên đoạn CD ( E khác D ) , đờng thẳng AE cắt đờng thẳng BC tại F , đờng thẳng vuông góc với AE tại A cắt đờng thẳng CD tại K .
Chứng minh tam giác ABF = tam giác ADK từ đó suy ra tam giác AFK vuông cân .
Gọi I là trung điểm của FK , Chứng minh I là tâm đờng tròn đi qua A , C, F , K .
Tính số đo góc AIF , suy ra 4 điểm A , B , F , I cùng nằm trên một đờng tròn .
Đề số 12
Câu 1 ( 2 điểm )
Cho hàm số : y =
Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số.
Lập phơng trình đờng thẳng đi qua điểm ( 2 , -6 ) có hệ số góc a và tiếp xúc với đồ thị hàm số trên .
Câu 2 ( 3 điểm )
Cho phơng trình : x2 – mx + m – 1 = 0 .
Gọi hai nghiệm của phơng trình là x1 , x2 . Tính giá trị của biểu thức .
. Từ đó tìm m để M > 0 .
Tìm giá trị của m để biểu thứ
Các file đính kèm theo tài liệu này:
- 108_De_thi_vao_lop_10.doc